Upoznavanje sa radom u Excel-u

Slika 1. Izgled radne sveske u excel-u

Termin 1

Excel-ov radni list se sastoji od kolona i redova. Makisamaln broj kolona je 256 i označene su velikim latiničnim slovima ili kombinacijom istih. Redovi su označeni brojevima. Presek reda i kolone čini ćeliju, osnovnu jedinicu u excel-u.

Jezičci sa komandama služe za odabir odgovarajuće stranice na traci sa komandama. Njihova uloga je slična traci sa maneijima u paketu Excel 2003.

Traka sa komandama. Komande su prikazane tako da budu dostupnuje korisniku.

Polje za adresu ćelije služi za lakše orjentisanje u glomaznim radnim listovima. Ćelija se uvek adresira tako što se navodi prvo naziv kolone pa potom broj reda.

Jezičci za radne listove, klikom na pojedini jezičak prelazite na sledeći radni list. Naziv jezička se može menjati (dvostruki klik i unosite tekst). Radni listovi olakšavaju rad. U toku vežbi vašu radnu svesku možete organizovati tako da svaki zadatak rešavate na posebnom radnom listu.

Traka formula služi za editovanje formula i funkcija.

Odrediti procenat hlorida u nepoznatom uzorku ako su dati sledeći podaci:

- masa vegeglasa sa uzorkom, [g] : 27,6115; 27,2185; 26,8105
- masa vegeglasa bez uzorka, [g]: 27,2185; 26,8105; 26,4517
- masa uzorka, [g]:
- masa lončića za žarenje sa AgCl, [g]: 21,4296; 23,4915; 21,8323
- masa lončića za žarenje bez AgCl, [g]: 20,7926; 22,8311; 21,2483
- masa AgCl, [g]:
- % hlorida:

Procenat hlorida možete izračunati na osnovu sledeće formule:

% hlorida =
$$\frac{\frac{\text{masa AgCl}}{M(\text{AgCl})} \times M(\text{Cl})}{\text{masa uzorka}} \times 100$$

Tekst koji ne može da stane u jednu ćeliju preliva se preko ostalih... Jednostavno proširite kolonu kako bi ceo tekst stao... postavite kursor između zaglavlja kolona dok se ne pojavi dvostrelica podeljena na pola, ne otpuštajte levi taster miša i prevlačite dok u potpunosti ne proširite kolonu....

Podaci se unose jednostavno, kliknite na ćeliju i krenite da kucate...

Home Insert Page Layout Formulas Data Review View									
ſſ		· 11 · A A		= »»	Wrap Te	xt	General		
Pa	ste ▼	B I U - A -			•a• Merge 8	Center -	<u>⊴</u> , %,		
Clip	board 🖻	Font 5		Alignm	ent	G.	Number		
SUM $\checkmark (\land \checkmark \checkmark f_x = C2-C3$									
	А	В	С	D	E	F	G		
1									
2		Masa vegeglasa sa uzorkom	27,6115	27,2185	26,8105				
3		Masa vegeglasa bez uzorka	27,2185	26,8105	26,4517				
4		Masa uzorka	=C2-C3						
5		Masa lončića žarenje bez Ago	1	<u> </u>					
6		Masa lončića žarenje sa AgCl		*	Unos formule otpočinje				
7		Masa AgCl			biolo koj	im aritmet	tičkim		
8					znakom				
9						,			

Excel različito tretira brojevne i tekstualne podatke. Brojeve poravnava uz desnu ivicu ćelija, a tekstualne podatke uz levu. Obratite pažnju prilikom unosa brojevnih podataka, kada su tretirani kao tekst (npr. datum), a kada kao brojevi?

Kod unosa brojeva povedite računa o regionalnim podešenjima (**Control panel/Regional and language settings**). Za srpski jezik zarez se koristi kao decimalni separator, a tačka odvaja hiljade, milione, itd. Proverite na računarima da li su date opcije ispravno Kako se masa uzorka dobija kao razlika masa punog i praznog vegeglasa, nakon unosa znaka jednakosti u ćeliju u kojoj želimo dobiti rezultat, potrebno je otkucati C2-C3 čime saopštavamo da vrednost polja C2 oduzima vrednost smeštenu u polju C3. Ne morate ručno unositi adrese ćelija, dovoljno je kliknuti na jednu ćeliju, otkucati znak aritmetičke operacije, i potom na drugu ćeliju. Kada završite unos formule, pritisnite taster enter i excel će obaviti željeni proračun. Da biste obavili istu operaciju na susednim ćelijama ne morate ponovo unositi formule možete se poslužiti komandom copy/paste. Excel će sve ostalo uraditi za vas.

	Home	Insert Page Layout Formu	ilas Data	a Reviev	w View	0 -	σx
Pa	aste ▼ ∛	Calibri \cdot 11 \cdot B I \underline{U} A^* \overline{A}^* \underline{U} \underline{A}^* \underline{E} \overline{E} \underline{V} \underline{A}^* \underline{E} \overline{E} \underline{V} \underline{A}^* \underline{E} \overline{E} Font \overline{V} A A	Gen	eral ▼ ▼ % ୨ →.0 mber 5	Styles	PInsert ▼ Delete ▼ Format ▼ Cells	· ੈ27 · · Ĵੈੈੈ · ·
	B10	\bullet f_x					≽
	А	В	С	D	E	F	
1							
2		Masa vegeglasa sa uzorkom	27,6115	27,2185	26,8105		
3		Masa vegeglasa bez uzorka	27,2185	26,8105	26,4517	sr. vrednost	
4		Masa uzorka	0,393	0,408	0,3588	0,3866	
5		Masa lončića za žarenje bez AgCl	21,4296	23,4915	21,8323		
6		Masa lončića za žarenje sa AgCl	20,7926	22,8311	21,2483		
7		Masa AgCl	0,637	0,6604	0,584	0,627133333	
8		%AgCl	40,41211				
9							
10							
11							
12							_
13							

Ukoliko ste sve uradili ispravno konačan rezultat bi trebalo da izgleda ovako:

Primer 2. Kompleksometrijsko određivanje Ca²⁺ i Mg²⁺ u bunarskoj vodi

Kompleksometrijski je određivana količina Ca²⁺ i Mg²⁺ jona prisutnih u bunarskoj vodi. Uzeto je po 50,00cm³ uzorka za svaku titraciju. Najpre je u četiri ponavljanja određen Ca²⁺ jon a potom zbir Ca²⁺ i Mg²⁺. Iz razlike je izračunata količina Mg²⁺ jona. Izračunati srednju vrednost merenja i standardnu devijaciju, a krajnji rezultat dati kao masu jednog i drugog jona u mg.

Ca^{2+} [cm ³]:	10,05	10,00	9.95	9,90
$Ca^{2+} + Mg^{2+} [cm^{3}]:$	15,55	15,45	15,45	15,50
C(EDTA)=0,1050moldm ⁻³				

Potrebno je najpre izračunati količinu (masu) Ca²⁺ i Mg²⁺ jona (ovo drugo možete iz razlike gornjeg i donjeg seta rezultata), za svako merenje ponaosob. Nakon toga potrebno je odrediti srednju vrednost tako dobijenih rezultata i izračunati standardnu devijaciju istih.

Aritmetička sredina data je formulom: $\overline{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{\sum x_i}{n}$

Standardna devijacija, mera je rasipanja rezultata oko srednje vrednosti i data je sledećom

relacijom: s =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

Srednju vrednost u excelu možete dobiti funkcijom **average**, a standardnu devijaciju funkcijom **stdev**. Obe funkcije kao argument imaju željeni set podataka. Napr. Average(A1:A22) daje srednju vrednost podataka smeštenih u ćelijama od A1 do A22 (kažemo da je set podataka A1:A22 argument ove funkcije. Analogno važi i za funkciju stdev.

Naravno kako u ovom odeljku uvežbavamo unos podataka i formula zanemarite ovaj brži način izračunavanja. Njega ćemo koristiti u kasnijim, nešto složenijim proračunima. Za one nefamilijarne sa kompleksometrijskim titracijama masu magnezijuma i kalcijuma možete odrediti na sledeći način:

 $m(Ca^{2+})[mg] = C_{FDTA} [mol/dm^3] \cdot V_{FDTA} [cm^3] \cdot M(Ca)[g/mol]$

 $m(Mg^{2+})[mg] = C_{EDTA} [mol/dm^{3}] \cdot (V_{EDTA} (Ca + Mg) - V_{EDTA} (Ca))[cm^{3}] \cdot M(Mg)[g/md]$

Ukoliko ste sve uradili kako treba konačan rezultat u vašem radnom listu bi trebalo da izgleda ovako:

9	Home	Insert	Page Layo	ut Form	ulas Da	ta Revie	w View	ı 🧯) _ = X
Pa	ste ▼ ∛	Calibri • B I U • · · · · · · · · · · · · · · · · · · ·		E E E	Ger Ger Solution Ger Solution N	neral ▼ ▼ % ୨ ≫.0 umber 5	Styles	•⊐ Insert ▼ → Delete ▼ ↓ Format ▼ Cells	Σ - 27- - 2- Editing
	119	- (ē ,	f.c.					×
	В	С	D	E	F	G	Н	- I	J 👗
1									
2	Vodta	Ca2+	10,05	10,00	9,95	9,90			
3	veuta	Ca2+ Mg2+	15,55	15,45	15,45	15,50	Xsr	S	
4	m	Ca2+	42,21	42	41,79	41,58	41,895	0,271109	
5		Mg2+	13,86	13,734	13,86	14,112	13,8915	0,158547	
6									
7									
8									

Primer 3. Koeficijent korelacije

Intenzitet fluorescencije u standardnom vodenom rastvoru fluoresceina određivan je fluorescentnim spektrometrom, pri čemu su dobijeni sledeći rezultati

Intenzitet fluorescencije (y)	:2,1	5,0	9,0	12,6	17,3	21,0	24,7
Koncentracija (x), pg/ml:	0	2	4	6	8	10	12

Odrediti koeficjent korelacije r prema sledećoj formuli:

$$r = \frac{\sum_{i} \{(x_i - \overline{x})(y_i - \overline{y})\}}{\left\{ \left[\sum_{i} (x_i - \overline{x})^2 \right] \left[\sum_{i} (y_i - \overline{y})^2 \right] \right\}^{1/2}}$$

Primer 4. McGowan-ove zapremine

McGowan-ova zaprenmina predstavlja molarnu zapreminu nekog jedinjenja (ml/mol), koja se može izračunati na sledeći način: $V = \sum a_i + 6,59 \cdot B$ gde je a_i pojedinačni doprinos svakog atoma (očitava se iz McGowan-ovog periodnog sistema), *B* broj veza u molekulu koji se računa kao: B = N - 1 + Rg, N broj atoma u molekulu, Rg broj prstenova. Ako je $a_i(C)=16,35$; $a_i(H)=8,71$; $a_i(O)=12,43$; izračunajte McGowan-ove zapremine za sledeća

jedinjenja: 1-naftol, acetofenon, etilacetat, metil-hidroksibenzoat, fenol.

Kvadratni koren izračunavamo primenom funkcije *SQRT* – skraćeno od engl. **Sq**uere **r**oot.