7. simpozijum
Hemija i zaštitu životne sredine
sa međunaradnim učešćem

EnviroChem 2015

7th Symposium
Chemistry and Environmental Protection
with international participation

KNJIGA IZVODA
BOOK OF ABSTRACTS

Palić, Srbija
9-12. jun 2015.
7. simpozijum
Hemija i zaštita životne sredine
sa međunarodnim učešćem

7th Symposium
Chemistry and Environmental Protection
with international participation
7. simpozijum
Hemija i zaštita životne sredine
sa međunarodnim učešćem

7th Symposium
Chemistry and Environmental Protection
with international participation

KNJIGA IZVODA
BOOK OF ABSTRACTS

Palić, Srbija
09 - 12. jun 2015.
Bioresimulation of river sediment contaminated with polychlorinated biphenyls: a laboratory study

Aleksandra Đurić1, Takeshi Nakano2, Ivana Uglijević1, Gordana Gogić-Cvijović2, Srdan Miletic2, Jelena Avdalović2, Mila Ilić1, Vladimir P. Beškoski1

1Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
2Research Center for Environmental Preservation, Osaka University, Yamadaoka 2-4, Suita, Osaka, 565-0871 Japan
3Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Beograd, Srbija

Persistent organic pollutants (POPs) are chemical substances that persist in the environment, bioaccumulate through the food chain and cause adverse effects on human health and the environment\cite{1, 2}. They include the group of polychlorinated biphenyls (Polychlorinated Biphenyls, PCBs), industrial chemicals which may be substituted with 1 - 10 chlorine atoms (Fig 1.)\cite{3-6}.

![Chemical structure of PCBs](image)

Figure 1. Chemical structure of PCBs

Due to their chemical inertness, heat resistance and high dielectric constants PCBs were used as insulators in transformers and capacitors, as heat exchangers, color additives and in the production of plastics\cite{3-6}.

The aim of our study was to analyze the potential of allochthonous and autochthonous microorganisms for the process of biodegradation of PCBs in sediment samples collected from rivers in the territory of Belgrade, Serbia, to protect the environment and estimate future treatment of these sites. The river sediment samples were collected from four locations in the territory of Belgrade: confluence of the Topčider river with Cukaricki Rukavac (CR), Marma Dorcol (MD), Zemunski Kej (ZK) and the confluence of the river Sava and the Danube, Ucse (U). Sediments were sampled from four depths in undisturbed condition as follows: 0-1, 1-3, 3-6 and 6-10 cm. The highest level of PCB in a sample is determined in CR sediment (169-305 ng/g) and MD (193.54-5 ng/g), while the sample concentration in ZK (6.2-7.1 ng/g) and U (2.1-53 ng/g) were relatively low.

For the PCBs bioremediation study composite samples has been made from the samples sampled from four depths in the ratio 1: 2: 3: 4 (w/w). In Bushnell - Haas medium (modified, chloride-free) were added the sand and composite samples, 1: 1 (w/w). The experiment lasted 70 days with alternating anaerobic - aerobic cycles with inoculation of model system at 21st and 56th day. Incubation was carried using consortium of genera \textit{Pseudomonas} (Genbank: JF826528.1 and JQ292806.1), \textit{Rhodococcus} (Genbank: JQ065876.1 and JX863995.1), and \textit{Achromobacter} (Genbank: JF826529.1). These allochthonous microorganisms were isolated from sites contaminated with petroleum products. In parallel, activity of indigenous microbial consortium in the process of transforming the PCB were monitored. As an abiotic control sterilized sample were used. Biodegradation processes are interrupted by sterilization. Extraction
Figure 2. Reduction of PCBs in the CR

References

BIOREMEDICATION OF RIVER SEDIMENT CONTAMINATED WITH POLYCHLORINATED BIPHENYLS: A LABORATORY STUDY

Aleksandar Đuriči, Takiši Nakaño, Ivana Ugličić, Gordana Gojić-Cužović, Srđan Miličić, Jelena Avedalović, Milla Ilić, Vladimir P. Beškoski

1. Faculty of Chemistry, University of Belgrade, Studenti trg 12-16, Belgrade, Serbia. 2. Research Center for Environmental Protection, Osaka University, Yamadaoka 2-1-4, Suita, Osaka, 567-0047, Japan. 3. Department of Chemistry- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Rajakova 22, Belograd, Serbia

E-mail: sandralj30@gmail.com

The aim of our study was to analyze the potential of allochthonous and autochthonous microorganisms for the process of biodegradation of PCBs in sediment samples collected from rivers in the territory of Belgrade, Serbia, to protect the environment and estimate future treatment of these sites.

Introduction

Persistent organic pollutants (POPs) are chemical substances that persist in the environment, bioaccumulate through the food chain and cause adverse effects on human health and the environment [1, 2]. They include the group of polychlorinated biphenyls (Polychlorinated Biphenyls, PCBs), industrial chemicals which may be substituted with 1-10 chlorine atoms (Fig. 1) [3-6].

Due to their chemical inertness, heat resistance and high dielectric constants, PCBs were used as insulators in transformers and capacitors, as heat exchangers, color additives and in the production of plastics [3-6].

Material and methods

The river sediment samples were collected from four locations in the territory of Belgrade (Fig. 2): confluence of the Toplička river with Ćušariki Rukavac (CR), Marina Đorđić (MD), Zemunski Kaj (ZK) and the confluence of the river Sava and the Danube, Ušće (U). Sediments were sampled from four depths in undisturbed condition as follows: 0-1, 1-3, 3-6 and 6-10 cm. For the PCBs bioremediation study compost samples were made from the samples sampled from four depths in the ratio 1:2:3:4 (w/w). In Bushnell-Haas medium (modified, chloride-free) were added the sand and composite samples, 1:1 (v/v). The experiment lasted 70 days with alternating anaerobic-aerobic cycles with inoculation of model system at 21st and 56th day. Inoculation was carried using consortium of genera Pseudomonas (Genbank: JF826522, JF826528), Phaeocystis (Genbank: JQ128576) and Achromobacter (Genbank: JF826529). These allochthonous microorganisms were isolated from sites contaminated with petroleum products. In parallel, activity of indigenous microbial consortium in the process of transforming the PCB were monitored. As an abiotic control sterilized sample were used. Biodegradation processes are interrupted by sterilisation. Extraction was carried out with a mixture of acetone: hexane, 1:1 (v/v). PCB content in the obtained samples was identified by GC-MS/MS method.

Results and Discussion

The highest level of PCBs in a sample is determined in CR sediment (169-305 ng/g) and MD (19.3-54.5 ng/g), while the sample concentration in ZK (6.2-7.1 ng/g) and U (2.1-5.3 ng/g) were relatively low (Fig. 3).

In Fig. 4, changes in concentrations of PCBs in the sample CR during bioremediation studies, after 42 and 70 days in the inoculated and un inoculated samples are presented. The results indicate the existence bioremediation potential of microorganisms isolated from contaminated sites for the treatment of environment contaminated with PCB compounds using alternating anaerobic-aerobic cycles.

Conclusions

In model systems inoculated with consortium of allochthonous microorganisms as well as in model systems with indigenous microorganisms it was observed reduction in the concentration of PCBs. This fact suggests that the mentioned microorganisms can be used in bioremediation of river sediment contaminated with polychlorinated biphenyls.

References

Acknowledgement: This work was supported by the Ministry of Education and Science, Republic of Serbia, Project No. III-4004 and JICA assisted project “Casasola Bioremediation and Biokorea: Marine Microorganisms for Development of Cleaner Indicators for Serbia.”