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The  3D-QSAR  analysis  based  on  alignment  independent  descriptors  (GRIND-2)  was  performed  on  the  set
of 110  structurally  diverse,  dual  binding  AChE  reversible  inhibitors.  Three  separate  models  were  built,
based  on  different  conformations,  generated  following  next  criteria:  (i)  minimum  energy  conformations,
(ii)  conformation  most  similar  to the  co-crystalized  ligand  conformation,  and  (iii) docked  conformation.
We  found  that  regardless  on conformation  used,  all the  three  models  had  good  statistic  and  predictivity.
The  models  revealed  the  importance  of  protonated  pyridine  nitrogen  of tacrine  moiety  for  anti  AChE
activity,  and  recognized  HBA  and  HBD  interactions  as  highly  important  for the  potency.  This  was  revealed
by  the  variables  associated  with  protonated  pyridinium  nitrogen,  and  the  two amino  groups  of  the  linker.
MIFs  calculated  with  the  N1  (pyridinium  nitrogen)  and  the DRY  GRID  probes  in  the  AChE  active  site
enabled  us  to establish  the  relationship  between  amino  acid  residues  within  AChE  active  site and  the

variables  having  high  impact  on models.  External  predictive  power  of  the  models  was  tested  on  the  set
of 40  AChE  reversible  inhibitors,  most  of  them  structurally  different  from  the  training  set.  Some  of  those
compounds  were  tested  on  the  different  enzyme  source.  We  found  that  external  predictivity  was  highly
sensitive  on  conformations  used.  Model  based  on docked  conformations  had  superior  predictive  ability,
emphasizing  the  need  for the  employment  of conformations  built by  taking  into  account  geometrical
restrictions  of  AChE  active  site gorge.
. Introduction

Alzheimer’s disease (AD) is progressive, neurodegenerative
isorder, characterized by the decrease of cognitive functions
uch as altered ability of memory and learning and behavioural
isturbances. The main pathological hallmarks of the disease
omprise: extracellular formation of senile amyloid-�-peptide
Ab) plaques [1],  intracellular formation of neurofibrillary tan-
les [2,3], the loss of cholinergic neurons from basal forebrain,
nd thereby decreased levels of neurotransmitter acetylcholine
ACh) and enzymes involved in its synthesis and hydrolysis: acetyl-
holinetransferase (ChAT) and acetylcholinesterase (AChE) [4,5].

evelopment of new therapeutics for AD is based on two  different

trategies, the so-called cholinergic and the amyloid hypothesis.
ccording to the cholinergic hypothesis, the increase in available
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ACh levels in the brain could induce cognitive improvements in
AD patients. The reduction of ACh hydrolysis by AChE inhibitors is
up to date the prevalent effective AD symptomatic treatment. On
the other hand, amyloid hypothesis suggest that amyloid polymer-
ization (aggregation) could play crucial role in neurodegenerative
process by disrupting the cell’s calcium homeostasis, inducing
the oxidative stress, and consequently neuronal apoptosis [6].
The formation of senile plaques involves cascade of events, most
important of them being cleavage of transmembrane amyloid pre-
cursor protein (APP) by �- or �-secretase, i.e. generation of soluble
amyloid-beta peptides. These soluble peptides can spontaneously
form larger aggregates. This leads to formation of insoluble senile
plaques [7,8]. The development of drugs based on amyloid hypoth-
esis involves �- or �-secretase inhibitors.

AChE contains 20 Å deep and narrow gorge, in which five regions
involved in the substrate and inhibitor binding can be distinguished

(Torpedo californica AChE numbering): (1) catalytic triad residues:
Ser 200, His 440, and Glu 327 [9],  at the bottom of the gorge, which
directly participate in catalytic cycle [10,11]; (2) oxyanion hole –
stabilizes the transient tetrahedral enzyme–substrate complex by

dx.doi.org/10.1016/j.jmgm.2012.08.001
http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
mailto:mvitod@chem.bg.ac.rs
dx.doi.org/10.1016/j.jmgm.2012.08.001
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M.D. Vitorović-Todorović et al. / Journal of Mo

ccommodation of negatively charged carbonyl oxygen of acetyl-
holine. This region is formed by backbone NH groups of amino
cid residues Gly 118, Gly 119, and Ala 201 [12,13]; (3) the ‘anionic
ite’ (AS), where Trp 84 is situated. This residue is conserved in
ll cholinesterases and is involved in orientation and stabiliza-
ion of trimethylammonium group of ACh, by forming cation–�
nteractions [14–16]; (4) acyl pocket, comprises two phenylalanine
esidues in positions 288 and 290, that interact with the substrate
cyl group [17]; (5) peripheral anionic site (PAS) [18–20] comprises
esidues located at the rim of the active site gorge, Tyr 70, Tyr 121,
rp 279, and Asp 72. Reversible inhibitors bind to AS or to PAS.
he so-called dimeric (dual) inhibitors bind simultaneously to both
f the sites. In the past decade, non-catalytic roles of AChE have
een established. It was proved that AChE has a key role in the
cceleration of A�-peptide deposition, promoting the formation of
�-plaques [21]. The dual-binding AChE inhibitors, which bind to
AS, could inhibit such processes [22]. Dual AChE inhibitors rep-
esent the important class of molecules, because they fill the gap
etween cholinergic and amyloid hypothesis, combining the two
iological activities in single molecular entity.

Correlation of pharmacological property (biological activity)
ith 3D description of drug molecule, and hereby identification of
rug features that contribute to its potency, represents the central
roblem in the field of drug design. Numerous methods for 3D QSAR
nalysis have been developed from the early 1980s of the last cen-
ury, with the CoMFA [23] being the most widely used technique.
o, it is not surprising that CoMFA and related methods (CoMSIA)
ere widely employed in modelling of AChE inhibitors. CoMFA is

pplied to a series of compounds that are aligned according to the
pecified criterion in 3D space. Next, the aligned molecules are
escribed by different 3D fields (originally only steric and elec-
rostatic fields were used), evaluated over a grid of points, using
uitable probe type. Partial least square analysis (PLS) is used for
orrelation of the CoMFA derived descriptors with the biological
ctivity.

Alignment of the molecules is the most crucial point in per-
orming successful CoMFA study, and represents a bottleneck and

ajor source of errors in CoMFA analysis. However, there are no
trict rules for the alignment. If structural data about target-ligand
omplexes are not available, molecules are aligned using all the
ther available information, pharmacophoric hypothesis, similar
olecular fragments, etc. For instance, Tong and co-workers [24]

erformed a CoMFA study on the set of 57 structurally similar N-
enzylpiperidinyl AChE inhibitors. Two types of alignment were
sed to optimize steric or electrostatic fitting between molecules.
he later alignment method gave statistically better model. Also,
ommon substructure fitting [25], pharmacophore based [26], and
tom based alignment (implemented in SYBYL) [27] were used
s alignment protocols for derivation of CoMFA models for AChE
nhibitors.

If a structure of biological target is known, then techniques
f the so-called structure based alignment could be used, which
nvolve conformer-based alignment using co-crystalized ligand as
he template, and docking based alignment. Recanatini and co-
orkers [28] docked two representative molecules into AChE active

ite and used the obtained complexes for superimposition of the
est of molecules for the alignment. Statistically highly significant
oMFA model was obtained, using a steric field alone. Chen and co-
orkers [29] compared ligand based alignment and docking based

lignment, obtained by AutoDock, in derivation of CoMFA/CoMSIA
odels for the set containing 60 tacrine–dihydopyridine hybrids.
ll models obtained gave good statistics and predictivity, but
he authors considered docking based model as more reliable.
lso, GOLD program was used for docking based alignment in
oMFA/CoMSIA study of 36 2-substituted aminoindanones [30].
tructure of AChE co-crystalized with gantstigmine was used as
r Graphics and Modelling 38 (2012) 194–210 195

alignment template for 40 physostigmine derivatives [31]. This
strategy yielded statistically significant CoMFA/CoMSIA models.

Research efforts have also been made in the development of
alignment independent descriptors. Those are CoMMA  [32], EVA
[33], and WHIM [34]; with EVA descriptors being the least sensitive
to conformation of compounds. Recently, Pastor and co-workers
[35] developed the alignment independent, so-called GRid INDe-
pendent (GRIND) descriptors. Instead of using field values for PLS
analysis, the pair of nodes (GRID MIF  minima) calculated by the four
GRID probes, are used as descriptors (variables). Only those pairs
of nodes (for the same, or for different probe type) that have the
highest product of interaction energy (IE), at the given distance
range, are used for PLS analysis. This method, although align-
ment independent, and according to the authors robust on small
to medium conformational changes, requires that the conforma-
tion used should be the best assessment of bioactive conformation.
Such conformations could be significantly different from the global
minimum conformation, obtained in vacuum or in solvent model.

We  decided to apply the last described method on the set of 110
AChE dual binding inhibitors, and to investigate how conformations
chosen by different reasoning, will influence the statistics and inter-
pretability of the models. Dual binding inhibitors represent a good
choice for such analysis. They comprise two  aromatic cores linked
by polymethylene chain. They are highly flexible and theoretically
could adopt different conformations even inside AChE gorge. An
additional benefit of the alignment independent descriptors is that
training set could comprise structurally very different compounds.
To the best of our knowledge, the set given in this study is one of
the largest, and chemically the most diverse set used for 3D-QSAR
analysis of AChE inhibitors. There is a lot of crystallographic data on
AChE-ligand complexes, so we were able to compare the obtained
results with the most common interactions that can be found in
AChE-ligand complexes. Predictivity of the models was tested by
the division of the original set on the training and test set, and
also by the external test set comprising 40 molecules, structurally
diverse comparing to the original set of 110 AChE inhibitors.

2. Methods

2.1. Description of the dataset

Six groups of structurally different compounds were used,
including: N-benzylpiperidine derivatives (1–11) [36], homod-
imeric quinazolinimines (12–32)  [37], heterodimers of quina-
zolinimine and lipoic acid (33–38)  [38], bis-pyridinium type
inhibitors (40–67)  [39,40], heterodimers of tacrine and substi-
tuted benzene derivatives (39, 68–80 and 97–110)  [41–43],  and
tacrine–xanomeline dimers (81–96)  [44], yielding totally 110 com-
pounds in the dataset, with activity range of four p(IC50) units.
Because experimental data were collected from the different
research groups, the experimental conditions for IC50 determi-
nation against AChE were carefully examined and compared.
All experiments were done using the same, Ellman spectro-
photometric assay [45], at pH 8.00, with ASCh as substrate. The
Electic Eel AChE was  used as enzyme source. IC50 values for
tacrine, as reference compound, were comparable in all series of
compounds; except for the set of tacrine-substituted benzene het-
erodimers. The measured tacrine potency in this experiment was
about four times lower. So, we renormalized IC50 values for this
group of compounds, using IC50 values obtained for tacrine, accord-
ing to the recommendation of Martin-Santamaria et al. [46].
2.2. Conformations of the molecules

Conformations were chosen based on different criteria, and the
three separate models were built.
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(i) SMILES notations of all compounds used in model were con-
verted to 3D by OMEGA [47], using MMFF94s [48] force field
(build and search). Up to two hundred conformations per com-
pound were generated. Conformation of each compound with
the lowest heat of formation was used for building of the first
model. In the rest of the text, we designate this model as
‘OMEGA model’.

(ii) Conformations for the second model were obtained using
crystal structure of the AChE complexed with bis(7)tacrine
inhibitor as a template, PDB code 2CKM. The coordinates of
the inhibitor were extracted from the PDB file and used as tem-
plate for superimposition by ROCS [49] program. Conformers
generated by OMEGA in the first step, were submitted to ROCS
program, and conformation of each compound most similar to
the conformation of bis(7)tacrine were chosen for the building
of the second model. In the ROCS program, hits were ranked by
default Tanimoto function. Under the shape options, the ‘shape
only’, and 10 random starts are chosen. The Tanimoto cut-off
is set to −1. In the rest of the text, we designate this model as
‘ROCS model’.

iii) For the third model, conformations were generated by dock-
ing of compounds to AChE crystal structure, PDB code 2CKM,
by AutoDock Vina 1.0 [50]. The all water molecules found in
the crystal structure were included. In the rest of the text, we
designate this model as ‘VINA model’. The box that include
both AS and PAS residues is defined manually in MGLTools (box
size 26 Å × 28 Å × 20 Å). Grid resolution is set to 1 Å, as default
in Vina, ‘exhaustiveness’ is set to 20, and energy range to 4.
Docked pose of the native ligand almost ideally reproduced
co-crystalized one. For the model building we chose the poses
that are not necessary ‘best ranked’ ones obtained by dock-
ing. For the tacrine comprising molecules, the first pose having
tacrine moiety in the AS is chosen. If the best ranked pose repre-
sents bent conformation (as found for molecules having long
linkers), we chose the next pose representing the extended
conformation. All conformations included in the model are
within the first three best ranked ones, as obtained by dock-
ing. All calculations by ROCS and AutoDock Vina were run on
a multi-node Linux based cluster equipped with 2x quad core
Intel Xeon-E5345 @ 2.33 GHz processors, in parallel or sequen-
tial mode.

.3. Calculating descriptors and model building

Models were built using Pentacle program. Protonation state
f each compound was ascribed by the program under pH 8.0,
s reported in the original reference. Pentacle uses AMANDA
51] algorithm to produce the second generation of alignment-
ndependent molecular descriptors (GRIND-2). Descriptors are
btained from GRID [52] molecular interaction fields (MIFs).
erived GRID MIF  minima are encoded in the variables that
escribe pair of nodes (interaction energy (IE) of each node and
he corresponding distance between nodes); descriptors are fur-
her processed by means of built-in PCA/PLS (principal component
nalysis/partial least squares) statistical tool. For the model gener-
tion N1, O, TIP and DRY probes were used, with GRID resolution
f 0.4 Å. For the encoding, maximum auto and cross-correlation
MACC2) algorithm were applied. Probes cut-off was  hold on
efault value, as well as MACC2 smoothing window and scale
actor. Validation of the models was done by cross-validation

sing five groups of the approximately same size in which the
bjects were assigned randomly. For the final models, the leave
wo out, and the leave one out cross-validation data are also
eported.
r Graphics and Modelling 38 (2012) 194–210

2.4. Predictivity of the models

Predictivity of the models was tested by random division of the
original set on the training and the test set (comprising 32 com-
pounds, designated as ‘test set 1’). Predictivity was  further tested
by truly external test set of the compounds, most of them struc-
turally dissimilar from the compounds in the original training set
and some of them tested on different enzyme source (designated
as ‘test set 2’). For this test set, we collected totally 40 compounds,
comprising: 2,4-disupstituted pyrimidines (111–119, structurally
dissimilar and tested on HuAChE) [53], dual tacrine congeners
(121–123, structurally similar, but tested on HuAChE) [54], piperi-
dine derivatives (124–134, structurally dissimilar and tested on
EeAChE) [55], indanone derivatives (135–145, structurally dissim-
ilar and tested on EeAChE) [56] and tacrine–ferulic acid dimers
(145–150, structurally similar and tested on EeAChE) [57]. Con-
formations of the compounds were generated in the same way
as for the training set, using OMEGA program for generating con-
formations, ROCS for choosing the most similar conformation to
co-crystalized ligand, and AutoDock Vina program for docking.
Where necessary, IC50 values were renormalized according to the
value for tacrine, in the same way  as for the training set. Predictiv-
ity was expressed in terms of r2 predictive values, for both test set
1, and test set 2.

3. Results and discussion

The aim of this study was to derive 3D-QSAR models, based on
the alignment independent descriptors (GRIND-2) for the set of
110 AChE dual-binding inhibitors. Dual binding AChE inhibitors are
composed of two aromatic cores connected with polymethylene
chain and therefore are highly flexible. As we mentioned above,
although applied method is insensitive on small to medium con-
formational changes, employment of conformations most similar
to the approximated bioactive conformation is recommended. We
have built three separate models, with different conformations
obtained following next criteria: global minimum conformation,
maximum similarity with co-crystalized ligand, and docked confor-
mations. We  aimed to investigate how conformational differences
will influence the final models. The structures of compounds and
their experimental pIC50 are shown in Schemes 1 and 2, and Table 1.
For the model building, hydrophobic (DRY), hydrogen bond donor,
HBA (O), hydrogen bond acceptor, HBD (N1), and shape (TIP) probes
were used. These probes mimic  the most common types of inter-
actions between ligand and receptor. The models obtained had
good statistic and predictivity (Table 2). The model derived from
ROCS conformations showed the best statistical quality. Data of
PCA models, and experimental vs. calculated pIC50 are given in
Supplementary material, Tables S1 and S2.  Partial least squares
(PLS) coefficient plots obtained with 3 latent variables (LV) for the
each model are shown in Fig. 1.

The main observations, that give significant information on
the pharmacophoric pattern of the molecules influencing their
potency, will be discussed for the each model separately. Two
groups of compounds comprise tacrine subunit (Scheme 2). The
obtained results are interpreted according to the widespread
assumption, based on the large amount of crystallographic and
SAR data, that tacrine subunit binds to AS of AChE. This was also
in accordance with the docking poses obtained for the majority of
1–110.
3.1. Description of the conformations

The detailed description of derived docking poses for all com-
pounds is beyond the scope of this article, but a few important
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Scheme 1. Structures of the

oints should be mentioned. All compounds containing tacrine
oiety are positioned inside AChE active site with the tacrine

tacked between aromatic rings of Trp 84 and Phe 330 (AS
esidues), and the “upper” aromatic (tacrine–benzene dimers,
8–80 and 97–102)  or alicyclic piperidine (tacrine–xanomeline
imers, 81–96)  moiety is stacked between aromatic rings of Trp
79 and Tyr 70. We  have also observed that bispyridinium com-

ounds (40–59)  are bound with the one aromatic ring interacting
ith AS residues, but as compounds are very long, they are unable

o establish the interactions with Trp 279 and Tyr 70 of the PAS;
ounds 1–59 used as dataset.

so the “upper” aromatic ring protrudes outside the AChE gorge
and does not establish any significant interactions with AChE
residues.

Dimeric quinazolinimines were oriented similarly to the
tacrine-containing compounds. For the quinazolinimine–lipoic
acid heterodimers, docking results showed more poses with lipoic
acid, comparing to quinazolinimine moiety, interacting with the

Trp 84. This emphasizes the lower affinity of quinazolinimine aro-
matic core to anionic site of the enzyme. Important docking poses
are given in Fig. S3, Supplementary material.
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.2. Model based on OMEGA conformations of minimal energy

The most important variables for this model are shown in Fig. 2.
he expression of the important variables for all compounds is
iven in Supplementary material, Table S4.

In the O O block, all variables positively correlated with activ-
ty have high impact on the model and are expressed only for
he most active compounds. Variable O O 147 (14.08–14.40 Å)
onnects: the MIFs’ associated with two linker amino groups, in
xtended conformations of tacrine–benzene dimmers, or proton-
ted pyridine nitrogen of tacrine subunit and distal amino group
f the linker in bent conformations of tacrine–xanomeline and
acrine–benzene dimers. Variables O O 150 (15.04–15.36 Å), 156
16.96–17.28 Å), and 158 (17.60–17.92) connect MIFs associated

ith pyridine nitrogen of the tacrine subunit and distal linker

mino group of tacrine–benzene dimers. Clearly, the presence of
wo hydrogen bond donors of molecules, associated with MIFs, on
he spatial distance from 14.08 to 17.28 Å, has positive influence on
unds 60–110 used as dataset.

the potency, and distinguishes the most active compounds from the
rest in the series.

In N1 N1 block, the most informative variables are those with
the negative impact on the model. Variables 263 (18.24–18.56 Å),
267 (19.52–19.84 Å), and 268 (19.84–20.16 Å) connect the MIFs’
associated with two distal oxygen atoms of bis-pyridinium deriva-
tives or two distal heterocyclic nitrogen atoms of homodimeric
quinazolinimines. They are expressed only for the less active com-
pounds. The presence of two hydrogen bond acceptors, associated
with MIFs’, on the spatial distance greater than 18.88 Å has negative
effect on AChE inhibition potency, and makes the clear distinction
between the least active compounds and the rest of the molecules.

In DRY O block, variable 455 (13.76–14.08 Å) has high pos-
itive impact on the model and is expressed for all active

compounds (Supplementary material, Table S4). For majority of
tacrine–benzene dimers, this variable connects MIFs’ associated
with the hydrophobic area of tacrine aromatic ring and with
the distal amino group of the linker. These compounds adopted
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Fig. 1. PLS coefficients plots (3LV) for the obtained models, based on: (a) OMEGA minimum energy conformations, (b) ROCS conformations, and (c) docked conformations.
T e, N1
g ers ar
t

e
M
w
F

he  type of variable blocks are indicated by colour: yellow, DRY DRY; red, O O; blu
reen, O N1; pink, O TIP; grey, N1 TIP. Variables assigned by red coloured numb
his  figure legend, the reader is referred to the web  version of the article.)
xtended conformations. Similarly, the same variable connects
IFs’ associated with DRY area of quinazolinimine ring and
ith the distal amino group of the linker (compounds 12–38).

or the tacrine–xanomeline dimers, the interpretation of this
 N1; green, TIP TIP; cyan, DRY O; magenta, DRY N1; navy blue, DRY TIP; dark
e specific for the particular model. (For interpretation of the references to colour in
variable is not straightforward, because of the bent conforma-
tions of molecules. The variable connects MIFs’ associated with
protonated pyridine nitrogen (HBD) and either hydrophobic area
of the xanomeline tetrahydropyridine ring, or hydrophobic area
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ig. 2. The most important variables derived from model based on OMEGA minimu
c)  DRY O 477 (20.80–21.12 Å), (d) 745 O N1 (7.68–8.00) (e) O N1 768 (15.04–1

n the middle of the linker. For some compounds, the same
ariable connects DRY area on xanomeline dehydropyridine ring
nd the HBA area on amino group of the linker. Variable 463
16.32–16.64 Å) describes the same pharmacophoric pattern. Vari-
ble 477 (20.80–21.12) has the lower impact on the model, but
t differentiates the most active tacrine–benzene dimers from the
est of the compounds. It connects MIFs’ associated with protonated
yridinium nitrogen (HBD) and hydrophobic area above the ben-
ene ring; or the hydrophobic area above tacrine moiety and OH
ubstituent at the benzene ring. So, the presence of hydrophobic
oiety and hydrogen bond donor on the spatial distance of about

0 Å is an attribute of the most active compounds.
Although expressed for the vast majority of compounds, vari-

ble 745 (7.68–8.00 Å) in the O N1 block, could be informative
or the pharmacophoric pattern favourable for PAS binding. It con-
ects MIFs’ associated with the distal amino group of the linker
nd alkoxy substituent on the benzene ring of the tacrine–benzene
imers. Giving the assumption that tacrine moiety binds to AS
Trp 84), and benzene moiety interacts with PAS (Trp 279 and
roximal amino acids), this variable could provide information
bout favourable structural elements for binding to the PAS. For
he tacrine–xanomeline dimmers, this variable cannot be inter-
reted in the same way. Most of these compounds are present in
ent conformations, having two aromatic moieties close to each
ther. For those molecules, variable 745 connects two  structural
oieties which are spatially close in conformations used, but prob-

bly distant in bioactive (bound) conformation. Variable O N1 768
15.04–15.36 Å) has the most positive impact on the model, and
onnects MIFs’ associated with alkoxy group of tacrine–benzene

imers and proximal amino group of the linker; or pyridinium
itrogen of the tacrine moiety and amide carbonyl group of the

inker in tacrine–xanomeline dimmers. The same variable connects
uinazolinimine nitrogen atom (N1) with distal amino group of
rgy conformations: (a) O O 158 (16.96–17.92 Å), (b) DRY O 455 (13.76–14.08 Å),
), and (f) O TIP 875 (16.32–16.64 Å).

the linker in homodimeric quinazolinimines. Similar structural ele-
ments are described by longer variables within this block. Those
variables are expressed for the more active compounds.

In O TIP block variable 849 (8.00–8.32) provides information
about structural elements favourable for binding both to AS and
to PAS of the enzyme. In tacrine–xanomeline dimers it connects
MIFs’ associated with pyridinium nitrogen (O) and with the aro-
matic ring of tacrine (TIP), as elements favourable for AS binding.
In tacrine–benzene dimers the same variable connects MIFs’ associ-
ated with amino group of the linker (O), and with the alkoxy groups
on the benzene ring (TIP). Variable O TIP 876 (16.64–16.96 Å), has
the most positive impact within this block, and describes phar-
macophoric pattern that is favourable for simultaneous binding to
AS and PAS. It connects aromatic ring of tacrine (TIP) or quina-
zolinimine moiety, and distal amino group of the linker (O) in
tacrine–benzene dimers or homodimeric quinazolinimines.

3.3. Model based on ROCS derived conformations

The most important variables for this model are shown in Fig. 3.
The expression of the important variables for all compounds is
given in Supplementary material, Table S5.

In O O block, variable 128 has the highest negative impact on
the overall model. It describes MIFs’ associated with two hydro-
gen bond donors on the spatial distance from 6.40 to 6.72 Å, and
connects structurally different elements, even for the compounds
within the same subset. For some compounds, same variable
connects MIFs’ associated with two amino groups of the poly-
methylene linker, feature that is usually considered beneficial for

anti-AChE activity [58]. Variables O O 144 (11.52–11.84 Å) and 161
(16.96–17.28 Å) provide the same type of information as variables
143, 150, 156, and 158 in OMEGA model, although distances are
slightly different.
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ig. 3. The most important variables derived from model based on the ROCS con
5.76–6.08 Å),  (d) O N1 805 (15.68–16.00 Å), and (f) O TIP 930 (21.12–21.44 Å).

In the N1 N1 block, variable 234 (5.76–6.08 Å) has the most
ositive impact within the block, although it is not expressed for
he most active compounds in the dataset. This variable could
ffer the information on favourable pharmacophoric pattern for
inding to the PAS. In the tacrine–xanomeline dimers, it con-
ects MIFs’ associated with nitrogen of thiadiazoline ring and with
he tetrahydropyridine nitrogen, or with the amide nitrogen. In
he tacrine–benzene dimers variable connects MIFs’ associated
ith the two alkoxy oxygens on the benzene ring. Therefore,

he presence of two hydrogen bond acceptors at spatial distance
.76–6.08 Å could be considered as favourable for binding to the
AS. Variable is expressed only in the ROCS model. Variables 278
19.84–20.16 Å) and 280 (20.48–20.80 Å) are comparable with the
ariables 263–268 in OMEGA model.

Variable DRY O 475 (13.76–14.08 Å) provides the same infor-
ation as variable 455 in OMEGA model. Also, it has the most

ositive impact within this block. This variable describes slightly
ifferent structural fragments of tacrine–xanomeline dimers, com-
aring to OMEGA model, since these compounds are present in
ore extended conformations in ROCS model. It connects DRY area

elated to xanomeline fragment with the O field, associated with
ither protonated pyridinium nitrogen or distal amino group of
he linker, depending on the linker length, and on conformation
f the particular compound. Variable DRY O 496 (20.48–20.80 Å)
icely differentiates the most active compounds from the rest of
he set, and is comparable to variable 477 in the OMEGA model.
ariable O N1 805 (15.68–16.00 Å) has the highest positive impact
n the model, and along with the related variables (803 and 806)
rovides the same information as the variable 768 in OMEGA
odel.

In O TIP block, variable 888 (7.68–8.00 Å) provides the same

ype of information as variable 849 in OMEGA model, about struc-
ural elements favourable for simultaneous binding to AS and PAS
f the enzyme. Variable O TIP 930 (21.12–21.44 Å) is expressed
tions: (a) O O 128 (6.40–6.72 Å), (b) O O 147 (12.48–12.80 Å), (c) N1 N1 234

only for the most active compounds in the dataset and connects
MIFs’ associated with pyridine nitrogen of tacrine subunit and with
the most distal part of dual tacrine–xanomeline or tacrine–benzene
heterodimers.

3.4. Model based on VINA docked conformations

The most important variables for this model are shown in Fig. 4.
The expression of the variables for all compounds is given in
Supplementary material, Table S6.

Variable DRY DRY 66 (21.12–21.44 Å) has moderate negative
impact on the model, and is expressed only for the less potent
compounds. Variable connect MIFs’ associated with the two  distal
benzyl groups of pyridinium dimers. In dual AChE inhibitors, the
one aromatic group interact with AS (Trp 84), the chain spanning
along the active site gorge, and the other aromatic moiety interacts
with PAS (Trp 286). The influence of linker length on AChE inhi-
bition potency is well documented in the literature [59]. So, this
variable shows that too long linker in the dual binding inhibitors
cause decrease in inhibition potency, because of the lack of proper
positioning of aromatic moiety in the PAS, and its interaction with
Trp 279.

The variable 123 (8.64–8.96 Å) has high positive impact in
the O O block. In the different subsets, this variable describes
structurally different elements of the compounds. Variable con-
nects MIFs’ associated with the protonated pyridinium nitrogen
and with the amino group of linker close to tacrine moiety, in
tacrine–xanomeline dimers; or MIFs’ associated with the two
amino groups of the linker in tacrine–benzene dimers, and in quina-
zolinimine heterodimers. The O O variable 135 (12.48–12.80 Å),

resembles variables 143 in OMEGA, and 147 in ROCS model, and
has very low impact on the model. Variable 147 (16.32–16.64 Å)
connects MIFs’ associated with the protonated pyridinium nitro-
gen and the distal linker amino group of tacrine–benzene dimers.
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ig. 4. The most important variables derived from model based on VINA docked con
91  (7.36–7.68 Å).

t resembles variable 158 in the OMEGA model, and variable 161 in
he ROCS model.

The N1 N1 block provides similar type of information as in
ther two models; variable 241 (15.68–16.00 Å) gives the same
ype of information as somewhat longer variables (>18.00 Å) in
ther two models. In DRY O block, variable 427 (13.76–14.08 Å)
rovides the same information as variables 455 and 475 in other
wo models. The same is true for variable 444 (19.20–19.52 Å),
nd variables 477 and 496 in OMEGA and ROCS models, respec-
ively.

In O N1 block, variables 697 (8.00–8.32 Å) and 698
8.32–8.64 Å) have moderate negative impact on the whole

odel. These variables depict the same pharmacophoric pattern
s variable 745 in OMEGA model, positively correlated with the
otency. Variables connect MIFs’ associated with the distal amino
roup of the linker, and with the alkoxy substituents on the
enzene ring in tacrine–benzene dimers. Such pharmacophoric

attern is perceived as favourable for binding to PAS in OMEGA
odel, but as unfavourable in the model derived by using the

ocked conformations. Variable O N1 723 (16.32–16.64 Å) has
he overall highest positive impact on the model, and provides the
tions: (a) DRY DRY 66 (21.12–21.44 Å), (b) O N1 697 (7.68–8.00 Å), and (c) O TIP

comparable information as variables 768 and 805 in OMEGA and
ROCS model, respectively.

The variable O TIP 791 (7.36–7.68 Å) describes the same struc-
tural fragments of compounds as variables 849 and 888 in OMEGA
and ROCS model, respectively; but it has very low positive impact
on the model derived from docked conformations. Variable 832
(20.48–20.80 Å) provides the same information as variable 930 in
ROCS model, and is expressed only for the most active compounds
in the set.

The most important variables, their expression, and the related
structural elements of compounds are shown in Table 3. Regardless
of conformation, all three models have good statistics and predic-
tivity. Comparative analysis, as presented in Table 3, shows that the
most important variables are expressed in all three models. Struc-
tural elements of the compounds that have favourable influence on
anti-acetylcholinesterase potency are:
- Protonated pyridinium nitrogen (of the tacrine subunit) and
distal linker amino group; or the two  amino groups of the
linker, at a distance greater than 14 Å, as described by long O O
variables.
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Table  1
Experimental pIC50 for the compounds 1–110.

Comp. no. pIC50 Comp. no. pIC50 Comp. no. pIC50

1a 5.921 38 6.330 75a 8.426
2a 6.567 39 5.031 76 8.506
3 7.796  40a 5.455 77 8.417
4  7.584 41 5.848 78 8.812
5 5.398  42a 5.846 79 8.932
6  7.886 43 5.863 80a 8.016
7a 7.432 44 6.036 81 7.200
8  7.276 45 6.143 82 7.360
9 7.796  46a 5.551 83 7.660
10  5.638 47 5.710 84a 7.580
11 6.276  48a 4.684 85 7.830
12a 6.267 49a 4.943 86a 7.870
13  6.480 50 4.932 87 7.970
14  6.692 51 6.236 88 7.990
15a 7.310 52 5.939 89a 7.920
16 6.251  53 6.055 90 7.970
17  7.678 54 5.351 91 8.070
18 6.217  55 6.468 92a 8.060
19a 6.752 56 5.762 93 8.180
20 7.745  57 5.684 94 7.640
21a 6.539 58a 5.099 95 8.190
22  8.174 59 5.879 96a 8.210
23  6.815 60 5.775 97 7.564
24  7.119 61 5.337 98a 7.722
25 6.271  62 4.527 99 8.384
26a 5.976 63 5.842 100a 8.352
27 6.207  64 4.996 101 8.714
28  6.101 65a 4.588 102 8.346
29a 7.102 66 6.161 103a 8.267
30 7.187  67a 5.262 104 8.379
31  7.236 68 7.032 105a 8.627
32 4.842  69 7.583 106 8.312
33a 5.547 70 8.194 107a 8.127
34 5.339  71a 7.971 108 8.236
35  5.358 72a 8.728 109 8.562

-

-

-

t

T
S

A
v

36  6.129 73 8.947 110 8.217
37 5.712  74 8.939

a Compounds included in the test set 1.

 Protonated pyridinium nitrogen (O) and distal DRY area (xanome-
line or benzene moieties), which probably interacts with PAS
residues, described by variables 477, 496, and 444 in OMEGA,
ROCS, and VINA models respectively.

 Proximal amino group (O) of the linker and alkoxy substituents
on the benzene ring, or imino group of quinazolinimine ring (N1),
described by variables 768, 805 and 723 in OMEGA, ROCS, and
VINA models, respectively. These variables have the highest pos-
itive impact in all models.

 Protonated pyridinium nitrogen (O) and endmost part of the
molecules (TIP), as described by variables 876, 930, and 832 in

OMEGA, ROCS, and VINA models, respectively.

Everything so far described emphasizes the importance of pro-
onated pyridinium nitrogen for AChE inhibition activity. According

able 2
tatistics for the PLS models derived, based on different conformations.

LV SSX SSXacc SDEC SDEP 

OMEGA
1 34.73 34.73 0.77 0.80 

2  8.48 43.21 0.66 0.73 

3  13.62 56.83 0.63 0.73 

ROCS
1  39.63 39.63 0.71 0.73 

2  7.78 47.40 0.56 0.62 

3  3.91 51.31 0.48 0.62 

VINA
1  36.76 36.76 0.75 0.77 

2  7.69 44.45 0.63 0.70 

3 4.21  48.66 0.55 0.73 

bbreviations: SSX, X variable explanation; SDEC, standard deviation of error of calculati
alue.  Validation methods used for calculation of q2 are: random groups (RG), leave two  o
r Graphics and Modelling 38 (2012) 194–210 203

to the crystal structures of AChE co-crystalized with the tacrine and
tacrine-related dual inhibitors, protonated pyridinium nitrogen
forms hydrogen bond with backbone carbonyl group of His 440, the
residue of the catalytic triad [60]. Dual quinazolinimine-containing
compounds (12–32) have structural elements favourable for anti
AChE activity, similar to the tacrine based inhibitors. This is
revealed by the intensive DRY O and O TIP variables (455 and
875, OMEGA model), expressed for the both subset of compounds.
Heterocyclic nitrogen of quinazolinimine containing compounds
has the higher pKa value, comparing to tacrine nitrogen, and con-
sequently is not protonated at assay pH. Therefore, the variables
important for AChE activity, O O 158 and DRY O 477, which con-
nect MIFs associated with protonated heterocyclic nitrogen with
other structural elements of tacrine-based compounds, are not
expressed for quinazolinimine containing compounds. Providing
the importance of such observation for the interpretation of the
models, we  estimated protonation states by independent soft-
ware, ADMET Predictor (Simulations Plus, Inc.) [61], for the two
representative compounds, that belong to dual quinazolinimines
(compound 16), and to tacrine benzene dimers (compound 107).
The results obtained were in accordance with protonation states
ascribed by Pentacle. Predominant microstates, on the experimen-
tal conditions (pH 8.00), show the protonated heterocyclic nitrogen
of tacrine moiety in compound 107, while the ‘pyridinium’ nitro-
gen of quinazolinimine in compound 16 is not protonated (see
Table S7 and Figs. S8 and S9 in Supplementary material). Therefore,
the lack of the protonation of heterocyclic nitrogen could be consid-
ered as the main reason for the lower potency of quinazolinimine
dimers.

The most important structural element of the compounds, hav-
ing negative impact on anti-AChE activity, in all three models, is the
presence of MIFs’, at spatial distance greater than 18 Å, associated
with two  HBA. Such structural elements are two oxime oxygens
of bispyridinium compounds, and two unprotonated heterocyclic
nitrogens of homodimeric quinazolinimines.

The major differences between three models we found for the
short variables (<8.00 Å). We have tried to identify short variables
that can describe specific structural elements favourable for bind-
ing to the AS or to the PAS of the AChE. Such variables are identified
in the three blocks, N1 N1, O N1 and O TIP (Table 2), but they
were not expressed in all models, or did not have the same impact
on the models. We  have built separate models only for tacrine-
related dual inhibitors (68–110) (results not shown) in order to find
variables that describe favourable structural elements for binding
to PAS. Although we  obtained statistically relevant models, short
variables had even lower intensities in PLS models than in the
original model. Generally, we had the problem with interpretation

of short variables, because they were related to different struc-
tural elements of the compounds, even within the same subset.
This is especially evident in the N1 N1 block, for all three models
reported. Short variables have high positive impact on the models,

R2 R2
acc Q 2

acc (5RG) Q 2
acc (LTO) Q 2

acc (LOO)

0.60 0.60 0.57 0.60 0.58
0.71 0.71 0.64 0.68 0.65
0.03 0.73 0.64 0.66 0.65

0.67 0.67 0.65 0.62 0.65
0.12 0.79 0.74 0.69 0.75
0.05 0.84 0.75 0.72 0.76

0.63 0.63 0.60 0.60 0.60
0.11 0.74 0.67 0.68 0.68
0.06 0.80 0.65 0.66 0.66

on; SDEP, standard deviation of error of prediction. The ‘acc’ states for cumulative
ut (LTO), and leave one out (LOO).
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Table 3
The most important variables in the models based on different conformations.

Block type OMEGA ROCS VINA Structural elementsa Expression

DRY DRY – – 66 (31.12–21.44) Endmost benzene rings of
bispyridinium compounds

Only for less potent

O  O – 128 (6.40–6.72) 114 (5.76–6.08) Miscellaneous Highest negative impact. For
majority

147
(14.08–14.40)

144(11.52–11.84) Low impact dNH-Npyr or pNH-dNH For the most active

150–158
(16.96–17.92)

161
(19.96–17.28)

147 (16.32–16.64) dNH-Npyr or pNH-dNH For the most active

N1  N1 – 234 (5.76–6.08) – Binding to PAS Most positive within the block.
For majority

263–268
(18.24–20.16)

278,  280
(19.84–20.80)

241 (15.68–16.00) Oxime oxygens of
bispyridinium dimmers

Only for less active compounds

DRY  O 455
(13.76–14.08)

475
(13.76–14.08)

427 (13.76–14.08) Tac-dNH For majority

463
(16.32–16.64)

–  435 (16.32–16.64) Tac-dNH For majority

477
(20.80–21.12)

496
(20.48–20.80)

444 (19.20–19.52) Benzene-Npyr Only for the most active

O  N1 745 (7.68–8.00)
Positive impact

– 696–698 (7.68–8.64)
Negative impact

dNH-Obenz in tacrine benzene
dimers

For majority

768
(15.04–15.36)

805
(15.68–16.00)

723 (16.32–16.64) pNH-Obenz Highest positive impact
For majority

O  TIP 849 (8.00–8.32)
Positive impact

888 (7.68–8.00)
Positive impact

791 (7.36–7.68)
Low negative impact

Npyr-tac, dNH-Obenz For majority

876
(16.64–16.96)

–  – dNH-tac For majority

–  930 832 (20.48–20.80) Npyr-endmost part Only for the most active
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(21.12–21.44)

a Explanations: tac, tacrine moiety; dNH, distal amino group of the linker, in respec
pyr,  pyridinium nitrogen, Obenz, alkoxy substituents on benzene ring.

ut the important common structural features relevant for high
otency cannot be anticipated. Considering the fact that short vari-
bles have different influence (positive or negative), and impact
high or low) in different models, we are able to conclude that they
re less interpretable in describing structure–activity relationships.

The other difference between three models lies in different
xpression pattern for DRY DRY variables (see PLS coefficients
lots, Fig. 1). In OMEGA model the short variables are negatively
orrelated with potency, and longer variables are positively corre-
ated with potency. In model based on VINA docked conformations

e found reverse situation. In ROCS model all DRY DRY variables
ere positively correlated with potency. So far we cannot offer

xplanation for this. It is also unusual that all three models rec-
gnized HBD and HBA interactions as the most important for the
otency of compounds, even more important then hydrophobic

nteractions, as revealed by intensities of variables in the O O and
 N1 blocks. We  did not expect such result, considering the fact

hat AChE active site gorge is lined with 14 aromatic amino acid
ide chains. The importance of hydrophobic interactions could be
nticipated only from DRY O and O TIP variables of high intensity
see Table 2), expressed for the most active compounds.

.5. Molecular interaction fields of AChE active site

We have calculated molecular interaction fields (MIFs) defin-
ng the box that include the AChE active site gorge, and using the
robes that mimic  important structural elements of the ligands in
he dataset. Those were: N1 probe which mimic  protonated pyri-
inium nitrogen; N1: probe, resembles amino group of the linker,
nd the DRY probe mimicking aromatic moieties of inhibitors
tacrine and similar). Those structural elements are common to

ajority of inhibitors included in the set. The OC1 probe resem-

les the alkoxy substituents on the benzene ring of the compounds
8–79 and 97–110.  The fields obtained by N1 probe on the isocon-
our level of −8.0 kcal/mol are presented in Fig. 5a. The important

inima are located near backbone carbonyl group of His 440,
crine moiety; pNH, proximal amino group of the linker in respect to tacrine moiety,

hydroxyl group of Ser 200 side chain, and carboxyl group of the
Glu 199 side chain. The former two  residues belong to the catalytic
triad, and the later one is also important for ACh hydrolysis, because
it stabilizes the transition state in Ser 200 acylation, via electro-
static interactions with imidazole ring of the His 440. These results
are also in accordance with the assumption that protonated nitro-
gen of the tacrine interacts with the backbone carbonyl of His 440,
emphasizing the importance of such protonation for the AChE inhi-
bition potency. The average distance between backbone carbonyl O
of the His 440 and centroid defined on aromatic ring of the Trp 279 is
16.50–17.50 Å in various AChE crystal structures [60]. This distance
corresponds to DRY O variables 437–439 (in all three models),
which are expressed for the majority of more potent compounds,
and usually connect MIFs’ associated with pyridinium nitrogen and
distal aromatic ring of tacrine comprising compounds (68–110).
The DRY field on isocontour level of −2.0 kcal/mol is shown in
Fig. 5b. Three important minima are found, located between Trp 279
and Tyr 70 (PAS), and between Trp 84 and Phe 330 (AS). The third
important minimum is found near Trp 432. Location of the DRY
probe fields is in accordance with the well-known experimental
and theoretical results about binding of dual inhibitors to AChE.

The fields of the N1: probe are found near hydroxyl group of Ser
286, located at the rim of active site gorge, on the opposite side of
typical PAS residues. Relatively large minimum of the same probe
is found near backbone carbonyl group of Trp 279; the side chain
amino group of Asn 280; and the side chain carboxyl group of Glu
278. In AS site, N1: probe minima are found near backbone carbonyl
group of Trp 84; as well as near side chain carbonyl (amido) group
of Asn 85. Those fields are shown in Fig. 5c on the isocontour level of
−8.00 kcal/mol. Minima for OC1 probe are found near the backbone
carbonyl group of Trp 279, the side chain amido group of Asn 280,
and near hydroxyl group of Ser 286 side chain (Fig. 5d). Closer visual

inspection of docking solutions for 68–80 and 97–110,  showed that
amino groups of the linker and alkoxy groups on the benzene ring
are not close to any of the amino acid residues found by GRID, as
possible sites of interactions with N1: and OC1 probe. In this case



M.D. Vitorović-Todorović et al. / Journal of Molecular Graphics and Modelling 38 (2012) 194–210 205

1 p

w
c

4

v
a
t
d
a
a
f
p
i
t
d
p
o
e
o
fi
i

Fig. 5. Calculated MIFs for AChE active site gorge: (a) N

e could not relate docked conformations of the compounds and
alculated MIFs for those two probes.

. Predictivity of the models

Internal predictivity of the models was tested by cross-
alidation methods (LOO, LTO and RG). However, q2 is by some
uthors considered as necessary, but not sufficient method to test
he predictivity of QSAR models [62]. Therefore, we  randomly
ivided the original set on the training (78 compounds, designated
s ‘reduced training set’) and test set (32 compounds, designated
s ‘test set 1’), to estimate the r2 predictive value. This was  done
or all three types of conformations, OMEGA, ROCS and VINA. Com-
ounds which belong to the test set 1, were marked by asterisk

n Table 1. PLS statistics for the models derived from the reduced
raining set (for OMEGA, ROCS, and VINA conformations), did not
iffer significantly from the original set, that includes 110 com-
ounds (see Table S10, Supplementary material). Moreover, models
btained included all important variables from the original mod-

ls, as described above. The r2 predictive values and standard error
f prediction (SDEP) for the test set 1, are shown in Table 4 (the
rst three entries). Experimental vs. predicted values are given

n Table S11 (Supplementary material) and in Fig. 6. As with the
robe, (b) DRY probe, (c) N1: probe, and (d) OC1 probe.

original set, the model derived from ROCS conformations had supe-
rior predictive ability, comparing to models derived from OMEGA
minimum, and the VINA docked conformations, with r2 = 0.834
(3LV). In all test sets, predicted pIC50 values, for majority of the
compounds, were within the log unit comparing with experimental
values. In OMEGA test set, some compounds appeared as outliers,
namely 15,  107 (underestimated pIC50), and 65,  84 (overestimated
pIC50). Compounds 15 and 107 were in bent conformations, so the
important long variables of high intensity (O O 158, DRY O 477
and O N1 768) were not expressed for those compounds. This can
be considered as the main reason for the lack of predictivity for
those compounds. In ROCS test set, predicted pIC50 for both of these
compounds (now present in extended conformations), fall within
the range of one log unit from the experimental ones. Compound 65
was outlier in all three test sets. So far, we cannot offer explanation
for this. Larger differences among r2

pred values exist, comparing to

q2 (RG). This can be seen from r2
pred values derived from test set 1,

based on OMEGA, ROCS and VINA conformations of the compounds
(0.752, 0.834, and 0.679, respectively) and q2 (RG) derived from

the original set (0.64, 0.75, and 0.65). The r2

pred is more sensitive on
conformations used.

The division of set on the training and test set usually gives
satisfactory predictive statistics, since it is often the case that
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Fig. 6. Experimental vs. predicted pIC50 values for test set 1 (a) OMEGA conformations, (b) ROCS conformations, (c) VINA conformations; and test set 2 (d) OMEGA
conformations, (e) ROCS conformations, and (f) VINA conformations.
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Table  4
Predictive ability of the models (expressed as r2

pred
values) for the test set 1 (OMEGA, ROCS and VINA conformations); and the test set 2 (OMEGA, ROCS and VINA conformations)

for  the different dimensionalities of the models (number of LVs). The best values for r2
pred

and SDEP are given in bold.

1LV 2LV 3LV 4LV 5LV

r2 SDEP r2 SDEP r2 SDEP r2 SDEP r2 SDEP

Test set 1
OMEGA 0.750 0.641 0.725 0.672 0.752 0.638 0.622 0.788 0.609 0.801
ROCS  0.702 0.699 0.777 0.605 0.834 0.522 0.793 0.582 0.795 0.580
VINA  0.627 0.782 0.679 0.725 0.657 0.750 0.619 0.790 0.515 0.892

Test  set 2
OMEGA 0.360 0.803 0.397 0.779 0.423 0.762 0.314 0.814 0.469 0.731
ROCS 0.452 0.739 0.581 0.647 0.460 0.734 0.482 0.719 0.533 0.683
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VINA  0.556 0.655 0.670 0.565 

he best r2 and SDEP values for the given model (depending on the number of LVs’)

ompounds present in test set are congeners, or structurally very
imilar to the compounds in the training set. What we examined
ext, is weather the models derived are predictive for the struc-
urally dissimilar compounds, and for compounds for which pIC50
alues were determined on the different enzyme source (human
ChE). Similar investigation was done by Bernard et al. [63]. They
sed the training set of 82 N-benzylpiperidine derivatives, whose

nhibitory data were determined on mouse AChE, and test set of 29
-benzylpiperidines with inhibitory data tested on human AChE.
ood predictivity was achieved, demonstrating the ability of the
odel to predict the potency of the compounds tested on the dif-

erent enzyme source, and in slightly different assay conditions (pH,
emperature).

For the test set 2, we collected totally 40 compounds, com-
rising: 2,4-disupstituted pyrimidines (111–119, structurally
issimilar and tested on HuAChE), dual tacrine inhibitors (121–123,
tructurally similar, but tested on HuAChE), piperidine deriva-
ives (124–134, structurally dissimilar and tested on EeAChE),
ndanone derivatives (135–145, structurally dissimilar and tested
n EeAChE) and tacrine–ferulic acid dimers (145–150, structurally
imilar and tested on EeAChE) (Scheme 3). The original models
OMEGA, ROCS and VINA) derived from 110 compounds, were
sed for the prediction. Statistics for the external predictivity (r2

pred
nd SDEP) is given in Table 4 (the last three entries), experimental
s. calculated pIC50 values are given in Table S12 (Supplemen-
ary material) and in Fig. 6. It is obvious that r2

pred is highly sensitive
n conformations used. It changes from poor, 0.469 (OMEGA
odel) to satisfactory predictivity of 0.740 (for VINA model).

otencies of the some of 2,4-disupstituted pyrimidines were less
ell predicted in OMEGA and ROCS test set 2. These compounds are

ignificantly smaller than compounds in the training set. Probably
hat those compounds even do not bind to both AS and PAS of
ChE simultaneously, and therefore produce less hydrophobic
ontacts with amino acid residues inside AChE active site gorge.
ndividual contributions from many short variables expressed
or those compounds, give rise to the overestimation of their
redicted pIC50 values. Surprisingly, pIC50 for compounds 148 and
49 (OMEGA and ROCS test set 2, respectively), were also less well
redicted, although compounds are similar to tacrine–benzene
imers (68–79 and 97–110)  and tested on EeAChE, without the
eed for IC50 renormalization. For the conformations used for
hose compounds (bent conformation in OMEGA test set 2), long
ariables having high intensities in the model were not expressed,
ausing the underestimation of their pIC50 values. For piperidine
erivatives 133 and 134, OMEGA and ROCS model overestimated

IC50 values. Potencies of those compounds are fairly well pre-
icted in VINA test set 2. The only outlier in VINA test set 2 was
ompound 135 (but fairly well predicted in OMEGA and ROCS test
et 2); so far we could not offer explanation for this.
672 0.563 0.740 0.501 0.712 0.528

arked in bold.

Both methods for the estimation of predictivity (division on
training and test sets, and employment of truly external, and
structurally dissimilar test set) gave good predictive statistics,
expressed as r2

pred (0.834 for ROCS test set 1 and 0.740 for VINA
test set 2), considering large structural diversity of compounds in
training and test sets. VINA model was highly successful in predict-
ing potencies for compounds belonging to test set 2, structurally
very dissimilar from the training set, and tested on the different
enzyme source. Interestingly, predictivity of the original model
derived from 110 compounds, was not sensitive on conformations
used (similar q2 values for OMEGA, ROCS, and VINA models), while
predictivity of the external test set 2 was highly influenced by the
conformations used (large discrepancy between r2 of OMEGA, ROCS
and VINA, for the test set 2). The test set 2 was best predicted by
VINA model, emphasizing the importance of using conformations
built in reference to geometrical restrictions of AChE active site
gorge.

5. Models based on 2D descriptors

Because it seemed that all three models, regardless on confor-
mation used, contained the similar chemical information about
structure–activity of AChE dual reversible inhibitors (although pre-
dictivity of the models was sensitive on conformations used),
we have built model based on descriptors derived from the 2D
structures of the compounds. Following blocks of 2D-dependent
descriptors [64] from E-Dragon software [65] were considered:
constitutional, functional group counts, topological, geometrical,
atom centred fragments, and molecular properties. Descriptors
were visually inspected and those having low or no variance
manually excluded. The rest of descriptors, along with activity of
compounds were imported in BILIN program [66], and systematic
search up to four variables was  performed. Model having the best
statistics, obtained for the initial set of 110 compounds is given
in Eq. (1).  Model built using the same descriptors for 150 com-
pounds (training and test set 2) was still statistically valid, having
something inferior statistics, Eq. (2).  Numerical values of descrip-
tors for all compounds are given in Table S13. There is insignificant
correlation between descriptors used, r2 < 0.1.

p(IC50) = 0.716(±0.15) nR10 + 1.113(±0.25) N-070

+ 5.446(±0.24) (n = 110; r = 0.827; s = 0.697; F

= 115.710; Q 2 = 0.656; sPRESS = 0.728) (1)

p(IC ) = 0.653(±0.16) nR10 + 0.645(±0.27) N-070
50

+ 5.736(±0.22) (n = 150; r = 0.700; s = 0.862; F

= 70.598; Q 2 = 0.465; sPRESS = 0.883) (2)
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Scheme 3. Structures of the com

here n is the number of objects, r the correlation coefficient, s
he standard deviation, F the Fischer F test, Q2 the leave one-out
quared correlation coefficient, and sPRESS is the standard deviation
f the leave one-out cross-validated equation.

Both descriptors in correlations have a positive sign, so high
otency of compounds is associated with increasing number of
tructural fragments described by the both of nR10 (number of 10-
embered rings (from the pool of constitutional descriptors)) and
-070 (defined as number of Ar NH Al fragments (from the pool
f the atom-centred fragments)). Visual inspection of the numerical
alues of descriptors given in Table S13 (Supplementary mate-
ial) show that subsets having high potency (tacrine–multialkoxy
enzenes and tacrine–xanomelines) indeed comprise both types
f fragments, but both structural elements are ascribed to tacrine
oiety alone (see Scheme S14, Supplementary material). For the

omodimeric quinazolinimines and heterodimers of quinazolin-
mine and lipoic acid, only nR10 descriptor have a constant value

f 2, but those compounds lack the N-070 fragment, due to double
ond between central ring of the quinazoline moiety and the N
onnected to it. Bis-pyridinium compounds, or N-benzylpiperidine
erivatives do not comprise condensed rings, or comprise just one
ds 111–150, used as test set 2.

moiety with condensed six-membered rings, and those compounds
generally exert lower potency.

Despite fair statistics, predicted pIC50 values (Table S13 in Sup-
plementary material) clearly show that the both models classify
compounds according to the structural classes, as described above,
but cannot distinguished molecules by their potencies within each
class.

6. Conclusions

The 3D-QSAR analysis based on alignment independent descrip-
tors (GRIND-2) was performed on the set of 110 structurally diverse
AChE reversible inhibitors. We  can conclude that for three sets of
conformations used, all models derived had good statistics and pre-
dictivity. The most important variables, having the high impact,
were expressed in all three models. The presence of HBA and HBD
groups, at specific, relatively large distances is revealed as highly

significant for the potency. Those groups are: protonated pyri-
dinium nitrogen in the AS, amino groups of the linker, and the
presence of electron-rich (alkoxy) substituents in moieties that
most probably interact with PAS. However, the method failed to
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ecognize specific structural elements favourable for binding to
ither the AS or the PAS of the AChE. Variables that can be con-
trained to either of those two regions were expressed usually for all
ompounds, and are related to different structural elements, even
ithin the same subsets of the compounds and had different pat-

ern of expression in the models. Therefore, the short variables were
ess informative in explaining SAR of the dataset used. MIFs calcu-
ated for the AChE using the N1 (pyridinium nitrogen) and DRY
robes enabled us to relate long DRY O variables with amino acid
esidues belonging to catalytic triad (His 440) and PAS (Trp 279 and
yr 70), that are important for the ligand binding.

Predictivity of the models was tested by the division of the
riginal set on the training and test set, and also by the external
est set comprising 40 molecules (test set 2), structurally dis-
imilar comparing to initial 110 AChE inhibitors. Some of those
ompounds were tested on different enzyme source (HuAChE). Pre-
ictivity of the models for the test set 2 was highly dependent upon
onformation used. Model based on VINA docked conformations
roved to be superior over other two models in predicting inhibi-
ion potency for the truly external test set (test set 2), reflecting
he need for using conformations built according to geometrical
estrictions of AChE active site gorge. In analysis of the initial mod-
ls, based on OMEGA, ROCS and VINA conformations, it seemed
hat all three models gave the same chemical information about
avourable structural elements for AChE inhibition potency. But the
redictivity of the external, structurally dissimilar test set, empha-
ized the importance of the conformation of compounds used in
he models.

The models based on 2D descriptors, derived for the sets com-
rising 110 compounds and 150 compounds, gave fair statistics,
ut both models only classified compounds according to the struc-
ural classes, and were not able to distinguish molecules by their
otencies within each class.

So far published 3D QSAR studies of AChE reversible inhibitors
67], were mostly limited on CoMFA/CoMSIA (alignment depend-
nt) models, derived from sets of compounds belonging to
ne class of AChE inhibitors (tetrahydroaminoacridines, N-
enzylpiperidines and piperazines, carbamates, etc.). Usually such
odels, have very good statistics (r2 > 0.9 and q2 > 0.7), but can

e applied for prediction of inhibition potency of only the nar-
ow structural class of compounds. Our study emphasized the
enefits of using the alignment independent descriptors. The set
mployed in this study was, so far, the most structurally diverse set
f AChE reversible inhibitors used for 3D QSAR modelling. Chemi-
al information condensed and enclosed by the models was proved
omprehensive in potency predictions of another, structurally dis-
imilar, test set.
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