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Highlights: 

 

►3D QSAR study on the set of 110 diverse dual binding AChE inhibitors is reported. 

► Three types of conformations were used for derivation of the models. 

► The most important variables were expressed in all three models. 

► Protonated pyridinium nitrogen was proved as highly important for inhibition potency. 

► Structurally diverse, external set (40 compounds) is well predicted by the models. 
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Abstract 

The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on 

the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models 

were built, based on different conformations, generated following next criteria: (i) minimum 

energy conformations, (ii) conformation most similar to the co-crystallized ligand conformation, 

and (iii) docked conformation. We found that regardless on conformation used, all the three 

models had good statistic and predictivity. The models revealed the importance of protonated 

pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD 

interactions as highly important for the potency. This was revealed by the variables associated with 

protonated pyridinum nitrogen, and the two amino groups of the linker. MIF’s calculated with the 

N1= (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to 

establish the relationship between aminoacid residues within AChE active site and the variables 

having high impact on models. External predictive power of the models was tested on the set of 40 

AChE reversible inhibitors, most of them structurally different from the training set. Some of those 

compounds were tested on the different enzyme source. We found that external predictivity was 

highly sensitive on conformations used. Model based on docked conformations had superior 

predictive ability, emphasizing the need for the employment of conformations built by taking into 

account geometrical restrictions of AChE active site gorge.  

Key words: Acetylcholinesterase; dual binding inhibitors; GRIND-2; 3D-QSAR; molecular 

interaction fields, external predictivity 
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1. Introduction 

Alzheimer's disease (AD) is progressive, neurodegenerative disorder, characterized by the decrease 

of cognitive functions such as altered ability of memory and learning and behavioural 

disturbances. The main pathological hallmarks of the disease comprise: extracellular formation of 

senile amyloid-β-peptide (Ab) plaques [1], intracellular formation of neurofibrillary tangles [2,3], 

the loss of cholinergic neurons from basal forebrain, and thereby decreased levels of 

neurotransmitter acetylcholine (ACh) and enzymes involved in its synthesis and hydrolysis: 

acetylcholinetransferase (ChAT) and acetylcholinesterase (AChE) [4,5]. Development of new 

therapeutics for AD is based on two different strategies, the so-called cholinergic and the amyloid 

hypothesis. According to the cholinergic hypothesis, the increase in available ACh levels in the 

brain could induce cognitive improvements in AD patients. The reduction of ACh hydrolysis by 

AChE inhibitors is up to date the prevalent effective AD symptomatic treatment. On the other 

hand, amyloid hypothesis suggest that amyloid polymerization (aggregation) could play crucial 

role in neurodegenerative process by disrupting the cell's calcium homeostasis, inducing the 

oxidative stress, and consequently neuronal apoptosis [6]. The formation of senile plaques involves 

cascade of events, most important of them being cleavage of transmembrane amyloid precursor 

protein (APP) by β- or γ-secretase, i.e. generation of soluble amyloid-beta peptides. These soluble 

peptides can spontaneously form larger aggregates. This leads to formation of insoluble senile 

plaques [7,8]. The development of drugs based on amyloid hypothesis involves β- or γ-secretase 

inhibitors. 

 AChE contains 20 Å deep and narrow gorge, in which five regions involved in the substrate 

and inhibitor binding can be distinguished (Torpedo Californica AChE numbering): (1) catalytic 

triad residues: Ser 200, His 440, and Glu 327 [9], at the bottom of the gorge, which directly 
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participate in catalytic cycle [10,11]; (2) oxyanion hole - stabilizes the transient tetrahedral 

enzyme–substrate complex by accommodation of negatively charged carbonyl oxygen of 

acetylcholine. This region is formed by backbone –NH– groups of amino acid residues Gly 118, 

Gly 119, and Ala 201 [12,13]; (3) the ‘anionic site’ (AS), where Trp 84 is situated. This residue is 

conserved in all cholinesterases and is involved in orientation and stabilization of 

trimethylammonium group of ACh, by forming cation–π interactions [14-16]; (4) acyl pocket, 

comprises two phenylalanine residues in positions 288 and 290, that interact with the substrate acyl 

group [17]; (5) peripheral anionic site (PAS) [18-20] comprises residues located at the rim of the 

active site gorge, Tyr 70, Tyr 121, Trp 279, and Asp 72. Reversible inhibitors bind to AS or to 

PAS. The so-called dimeric (dual) inhibitors bind simultaneously to both of the sites. In the past 

decade, non-catalytic roles of AChE have been established. It was proved that AChE has a key role 

in the acceleration of Aβ-peptide deposition, promoting the formation of Aβ-plaques [21]. The 

dual-binding AChE inhibitors, which bind to PAS, could inhibit such processes [22]. Dual AChE 

inhibitors represent the important class of molecules, because they fill the gap between holinergic 

and amyloid hypothesis, combining the two biological activities in single molecular entity. 

 Correlation of pharmacological property (biological activity) with 3D description of drug 

molecule, and hereby identification of drug features that contribute to its potency, represents the 

central problem in the field of drug design. Numerous methods for 3D QSAR analysis have been 

developed from the early 80's of the last century, with the CoMFA [23] being the most widely used 

technique. So, it is not surprising that CoMFA and related methods (CoMSIA) were widely 

employed in modelling of AChE inhibitors. CoMFA is applied to a series of compounds that are 

aligned according to the specified criterion in 3D space. Next, the aligned molecules are described 

by different 3D fields (originally only steric and electrostatic fields were used), evaluated over a 
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grid of points, using suitable probe type. Partial least square analysis (PLS) is used for correlation 

of the CoMFA derived descriptors with the biological activity.  

 Alignment of the molecules is the most crucial point in performing successful CoMFA 

study, and represents a bottleneck and major source of errors in CoMFA analysis. However, there 

are no strict rules for the alignment. If structural data about target-ligand complexes are not 

available, molecules are aligned using all the other available information, pharmacophoric 

hypothesis, similar molecular fragments, etc. For instance, Tong and co-workers [24] performed a 

CoMFA study on the set of 57 structurally similar N-benzylpiperidinyl AChE inhibitors. Two 

types of alignment were used to optimize steric or electrostatic fitting between molecules. The later 

alignment method gave statistically better model. Also, common substructure fitting [25], 

pharmacophore based [26], and atom based alignment (implemented in SYBYL) [27] were used as 

alignment protocols for derivation of CoMFA models for AChE inhibitors.  

 If a structure of biological target is known, then techniques of the so-called structure based 

alignment could be used, which involve conformer-based alignment using co-crystalized ligand as 

the template, and docking based alignment. Recanatini and co-workers [28] docked two 

representative molecules into AChE active site and used the obtained complexes for 

superimposition of the rest of molecules for the alignment. Statistically highly significant CoMFA 

model was obtained, using a steric field alone. Chen and co-workers [29] compared ligand based 

alignment and docking based alignment, obtained by AutoDock, in derivation of CoMFA/CoMSIA 

models for the set containing 60 tacrine-dihydopyridine hybrids. All models obtained gave good 

statistics and predictivity, but the authors considered docking based model as more reliable. Also, 

GOLD program was used for docking based alignment in CoMFA/CoMSIA study of 36 2-

substituted aminoindanones [30]. Structure of AChE cocrystalized with gantstigmine was used as 
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alignment template for 40 physostigmine derivatives [31]. This strategy yielded statistically 

significant CoMFA/CoMSIA models. 

 Research efforts have also been made in the development of alignment independent 

descriptors. Those are CoMMA [32], EVA [33], and WHIM [34]; with EVA descriptors being the 

least sensitive to conformation of compounds. Recently, Pastor and co-workers [35] developed the 

alignment independent, so-called GRid INDependent (GRIND) descriptors. Instead of using field 

values for PLS analysis, the pair of nodes (GRID MIF minima) calculated by the four GRID 

probes, are used as descriptors (variables). Only those pairs of nodes (for the same, or for different 

probe type) that have the highest product of interaction energy (IE), at the given distance range, are 

used for PLS analysis. This method, although alignment independent, and according to the authors 

robust on small to medium conformational changes, requires that the conformation used should be 

the best assessment of bioactive conformation. Such conformations could be significantly different 

from the global minimum conformation, obtained in vacuum or in solvent model.  

We decided to apply the last described method on the set of 110 AChE dual binding 

inhibitors, and to investigate how conformations chosen by different reasoning, will influence the 

statistics and interpretability of the models. Dual binding inhibitors represent a good choice for 

such analysis. They comprise two aromatic cores linked by polymethylene chain. They are highly 

flexible and theoretically could adopt different conformations even inside AChE gorge. An 

additional benefit of the alignment independent descriptors is that training set could comprise 

structurally very different compounds. To the best of our knowledge, the set given in this study is 

one of the largest, and chemically the most diverse set used for 3D-QSAR analysis of AChE 

inhibitors. There is a lot of crystallographic data on AChE-ligand complexes, so we were able to 

compare the obtained results with the most common interactions that can be found in AChE-ligand 
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complexes.  Predictivity of the models was tested by the division of the original set on the training 

and test set, and also by the external test set comprising 40 molecules, structurally diverse 

comparing to the original set of 110 AChE inhibitors. 

2. Methods 

2.1 Description of the dataset 

Six groups of structurally different compounds were used, including: N-benzylpiperidine 

derivatives (1-11) [36], homodimeric quinazolinimines (12-32) [37], heterodimers of 

quinazolinimine and lipoic acid (33-38) [38], bis-pyridinum type inhibitors (40-67) [39,40], 

heterodimers of tacrine and substituted benzene derivatives (39, 68-80 and 97-110) [41,42,43], and 

tacrine-xanomeline dimmers (81-96) [44], yielding totally 110 compounds in the dataset, with 

activity range of four p(IC50) units. Because experimental data were collected from the different 

research groups, the experimental conditions for IC50 determination against AChE were carefully 

examined and compared. All experiments were done using the same, Ellman spectrophotometric 

assay [45], at pH 8.00, with ASCh as substrate. The Electic Eel AChE was used as enzyme source. 

IC50 values for tacrine, as reference compound, were comparable in all series of compounds; 

except for the set of tacrine-substituted benzene heterodimers. The measured tacrine potency in 

this experiment was about four times lower. So, we renormalized IC50 values for this group of 

compounds, using IC50 values obtained for tacrine, according to the recommendation of Martin-

Santamaria et al. [46].   
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2.2 Conformations of the molecules  

Conformations were chosen based on different criteria, and the three separate models were built.  

(i) SMILES notations of all compounds used in model were converted to 3D by OMEGA [47], 

using MMFF94s [48] force field (build and search). Up to two hundred conformations per 

compound were generated. Conformation of each compound with the lowest heat of formation was 

used for building of the first model. In the rest of the text, we designate this model as ‘OMEGA 

model’;  

(ii) Conformations for the second model were obtained using crystal structure of the AChE 

complexed with bis(7)tacrine inhibitor as a template, PDB code 2CKM. The coordinates of the 

inhibitor were extracted from the PDB file and used as template for superimposition by ROCS [49] 

program. Conformers generated by OMEGA in the first step, were submitted to ROCS program, 

and conformation of each compound most similar to the conformation of bis(7)tacrine were chosen 

for the building of the second model. In the ROCS program hits were ranked by default Tanimoto 

function. Under the shape options, the ‘shape only’, and 10 random starts are chosen. The 

Tanimoto cut-off is set to –1. In the rest of the text, we designate this model as ‘ROCS model’;  

(iii) For the third model, conformations were generated by docking of compounds to AChE crystal 

structure, PDB code 2CKM, by AutoDock Vina 1.0 [50]. The all water molecules found in the 

crystal structure were included. In the rest of the text, we designate this model as ‘VINA model’. 

The box that include both AS and PAS residues is defined manually in MGLTools (box size 26 x 

28 x 20 Å). Grid resolution is set to 1 Å, as default in Vina, ‘exhaustiveness’ is set to 20, and 

energy range to 4. Docked pose of the native ligand almost ideally reproduced cocrystallized one. 

For the model building we chose the poses that are not necessary ‘best ranked’ ones obtained by 

docking. For the tacrine comprising molecules, the first pose having tacrine moiety in the AS is 
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chosen. If the best ranked pose represents bent conformation (as found for molecules having long 

linkers), we chose the next pose representing the extended conformation. All conformations 

included in the model are within the first three best ranked ones, as obtained by docking. All 

calculations by ROCS and AutoDock Vina were run on a multi-node Linux based cluster equipped 

with 2 x quad core Intel Xeon-E5345 @ 2.33 GHz processors, in parallel or sequential mode.    

2.3 Calculating descriptors and model building 

Models were built using Pentacle program. Protonation state of each compound was ascribed by 

the program under pH 8.0, as reported in the original reference. Pentacle uses AMANDA [51] 

algorithm to produce the second generation of alignment-independent molecular descriptors 

(GRIND-2). Descriptors are obtained from GRID [52] molecular interaction fields (MIFs). Derived 

GRID MIF minima are encoded in the variables that describe pair of nodes (interaction energy (IE) 

of each node and the corresponding distance between nodes); descriptors are further processed by 

means of built-in PCA/PLS (principal component analysis/partial least squares) statistical tool. For 

the model generation N1, O, TIP and DRY probes were used, with GRID resolution of 0.4 Å. For 

the encoding, maximum auto and cross-correlation (MACC2) algorithm were applied. Probes cut-

off was hold on default value, as well as MACC2 smoothing window and scale factor. Validation 

of the models was done by cross-validation using five groups of the approximately same size in 

which the objects were assigned randomly. For the final models, the leave two out, and the leave 

one out cross-validation data are also reported.  

2.4. Predictivity of the models 

Predictivity of the models was tested by random division of the original set on the training and the 

test set (comprising 32 compounds, designated as ‘test set1’). Predictivity was further tested by 
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truly external test set of the compounds, most of them structurally dissimilar from the compounds 

in the original training set and some of them tested on different enzyme source (designated as ‘test 

set 2’). For this test set, we collected totally 40 compounds, comprising: 2,4-disupstituted 

pyrimidines (111-119, structurally dissimilar and tested on HuAChE) [53], dual tacrine congeners 

(121-123, structurally similar, but tested on HuAChE) [54], piperidine derivatives (124-134, 

structurally dissimilar and tested on EeAChE) [55], indanone derivatives (135-145, structurally 

dissimilar and tested on EeAChE) [56] and tacrine-ferulic acid dimers (145-150, structurally 

similar and tested on EeAChE) [57]. Conformations of the compounds were generated in the same 

way as for the training set, using OMEGA program for generating conformations, ROCS for 

choosing the most similar conformation to co-crystalized ligand, and AutoDock Vina program for 

docking. Where necessary, IC50 values were renormalized according to the value for tacrine, in the 

same way as for the training set. Predictivity was expressed in terms of r2 predictive values, for 

both test set 1, and test set 2. 

3. Results and discussion 

The aim of this study was to derive 3D-QSAR models, based on the alignment independent 

descriptors (GRIND-2) for the set of 110 AChE dual-binding inhibitors. Dual binding AChE 

inhibitors are composed of two aromatic cores connected with polymethylene chain and therefore 

are highly flexible. As we mentioned above, although applied method is insensitive on small to 

medium conformational changes, employment of conformations most similar to the approximated 

bioactive conformation is recommended. We have built three separate models, with different 

conformations obtained following next criteria: global minimum conformation, maximum 

similarity with co-crystallized ligand, and docked conformations. We aimed to investigate how 

conformational differences will influence the final models. The structures of compounds and their 
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experimental pIC50 are shown in Schemes 1 and 2, and Table 1. For the model building, 

hydrophobic (DRY), hydrogen bond donor, HBA (O), hydrogen bond acceptor, HBD (N1), and 

shape (TIP) probes were used. These probes mimic the most common types of interactions 

between ligand and receptor. The models obtained had good statistic and predictivity (Table 2.). 

The model derived from ROCS conformations showed the best statistical quality. Data of PCA 

models, and experimental vs. calculated pIC50 are given in Supplementary material, Tables S1and 

S2. Partial least squares (PLS) coefficient plots obtained with 3 latent variables (LV) for the each 

model are shown in Figure 1.  

Please put the Scheme 1 here 

Please put the Scheme 2 here 

The main observations, that give significant information on the pharmacophoric pattern of 

the molecules influencing their potency, will be discussed for the each model separately. Two 

groups of compounds comprise tacrine subunit (Scheme 2). The obtained results are interpreted 

according to the widespread assumption, based on the large amount of crystallographic and SAR 

data, that tacrine subunit binds to AS of AChE. This was also in accordance with the docking 

poses obtained for the majority of 1-110. 

Please put the Table 1 here 

Please put the Table 2 here 

Please put the Figure 1 here 
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3.1 Description of the conformations  

The detailed description of derived docking poses for all compounds is beyond the scope of this 

article, but a few important points should be mentioned. All compounds containing tacrine moiety 

are positioned inside AChE active site with the tacrine stacked between aromatic rings of Trp 84 

and Phe 330 (AS residues), and the "upper" aromatic (tacrine-benzene dimers, 68-80 and 97-102) 

or alicyclic piperidine (tacrine-xanomeline dimers, 81-96) moiety is stacked between aromatic 

rings of Trp 279 and Tyr 70. We have also observed that bispyridinium compounds (40-59) are 

bound with the one aromatic ring interacting with AS residues, but as compounds are very long, 

they are unable to establish the interactions with Trp 279 and Tyr 70 of the PAS; so the "upper" 

aromatic ring protrudes outside the AChE gorge and does not establish any significant interactions 

with AChE residues.  

 Dimeric quinazolinimines were oriented similarly to the tacrine-containing compounds. For 

the quinazolinimine-lipoic acid heterodimers, docking results showed more poses with lipoic acid, 

comparing to qiunazolinimine moiety, interacting with the Trp84. This emphasizes the lower 

affinity of quinazolinimine aromatic core to anionic site of the enzyme. Important docking poses 

are given in Figure S3, Supplementary material.  

3.2 Model based on OMEGA conformations of minimal energy 

The most important variables for this model are shown in Figure 2. The expression of the 

important variables for all compounds is given in Supplementary material, Table S4.  

 In the O-O block, all variables positively correlated with activity have high impact on the 

model and are expressed only for the most active compounds. Variable O-O 147 (14.08-14.40 Å) 
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connects: the MIFs’ associated with two linker amino groups, in extended conformations of 

tacrine-benzene dimmers, or protonated pyridine nitrogen of tacrine subunit and distal amino 

group of the linker in bent conformations of tacrine-xanomeline and tacrine-benzene dimers. 

Variables O-O 150 (15.04-15.36 Å), 156 (16.96-17.28 Å), and 158 (17.60-17.92) connect MIF's 

associated with pyridine nitrogen of the tacrine subunit and distal linker amino group of tacrine-

benzene dimers. Clearly, the presence of two hydrogen bond donors of molecules, associated with 

MIFs, on the spatial distance from 14.08 to 17.28 Å, has positive influence on the potency, and 

distinguishes the most active compounds from the rest in the series.  

 In N1-N1 block, the most informative variables are those with the negative impact on the 

model. Variables 263 (18.24-18.56 Å), 267 (19.52-19.84 Å), and 268 (19.84-20.16 Å) connect the 

MIFs’ associated with two distal oxygen atoms of bis-pyridinium derivatives or two distal 

heterocyclic nitrogen atoms of homodimeric quinazolimines. They are expressed only for the less 

active compounds. The presence of two hydrogen bond acceptors, associated with MIFs’, on the 

spatial distance greater than 18.88 Å has negative effect on AChE inhibition potency, and makes 

the clear distinction between the least active compounds and the rest of the molecules.  

 In DRY-O block, variable 455 (13.76-14.08 Å) has high positive impact on the model and 

is expressed for all active compounds (Supplementary material, Table S4). For majority of tacrine-

benzene dimers, this variable connects MIFs’ associated with the hydrophobic area of tacrine 

aromatic ring and with the distal amino group of the linker. These compounds adopted extended 

conformations. Similarly, the same variable connects MIFs’ associated with DRY area of 

quinazolinimine ring and with the distal amino group of the linker (compounds 12-38). For the 

tacrine-xanomeline dimers, the interpretation of this variable is not straightforward, because of the 

bent conformations of molecules. The variable connects MIFs’ associated with protonated pyridine 
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nitrogen (HBD) and either hydrophobic area of the xanomeline tetrahydropyridine ring, or 

hydrophobic area in the middle of the linker. For some compounds, the same variable connects 

DRY area on xanomeline dehydropyridine ring and the HBA area on amino group of the linker. 

Variable 463 (16.32-16-64 Å) describes the same pharmacophoric pattern. Variable 477 (20.80-

21.12) has the lower impact on the model, but it differentiates the most active tacrine-benzene 

dimers from the rest of the compounds. It connects MIFs’ associated with protonated pyridinium 

nitrogen (HBD) and hydrophobic area above the benzene ring; or the hydrophobic area above 

tacrine moiety and –OH substituent at the benzene ring. So, the presence of hydrophobic moiety 

and hydrogen bond donor on the spatial distance of about 20 Å is an attribute of the most active 

compounds.  

 Although expressed for the vast majority of compounds, variable 745 (7.68-8.00 Å) in the 

O-N1 block, could be informative for the pharmacophoric pattern favourable for PAS binding. It 

connects MIFs’ associated with the distal amino group of the linker and alkoxy substituent on the 

benzene ring of the tacrine-benzene dimers. Giving the assumption that tacrine moiety binds to AS 

(Trp 84), and benzene moiety interacts with PAS (Trp 279 and proximal amino acids), this variable 

could provide information about favourable structural elements for binding to the PAS. For the 

tacrine-xanomeline dimmers, this variable cannot be interpreted in the same way. Most of these 

compounds are present in bent conformations, having two aromatic moieties close to each other. 

For those molecules, variable 745 connects two structural moieties which are spatially close in 

conformations used, but probably distant in bioactive (bound) conformation. Variable O-N1 768 

(15.04-15.36 Å) has the most positive impact on the model, and connects MIFs’ associated with 

alkoxy group of tacrine-benzene dimmers and proximal amino group of the linker; or pyridinium 

nitrogen of the tacrine moiety and amide carbonyl group of the linker in tacrine-xanomeline 
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dimmers. The same variable connects quinazolinimine nitrogen atom (N1) with distal amino group 

of the linker in homodimeric quinazolinimines. Similar structural elements are described by longer 

variables within this block. Those variables are expressed for the more active compounds.  

 In O-TIP block variable 849 (8.00-8.32) provides information about structural elements 

favourable for binding both to AS and to PAS of the enzyme. In tacrine-xanomeline dimmers it 

connects MIFs’ associated with pyridinium nitrogen (O) and with the aromatic ring of tacrine 

(TIP), as elements favourable for AS binding. In tacrine-benzene dimmers the same variable 

connects MIFs’ associated with amino group of the linker (O), and with the alkoxy groups on the 

benzene ring (TIP). Variable O-TIP 876 (16.64-16.96 Å), has the most positive impact within this 

block, and describes pharmacophoric pattern that is favourable for simultaneous binding to AS and 

PAS. It connects aromatic ring of tacrine (TIP) or quinazolineimine moiety, and distal amino 

group of the linker (O) in tacrine-benzene dimers or homodimeric quinazolinimines.  

Please put the Figure 2 here 

3.3 Model based on ROCS derived conformations  

The most important variables for this model are shown in Figure 3. The expression of the 

important variables for all compounds is given in Supplementary material, Table S5.  

 In O-O block, variable 128 has the highest negative impact on the overall model. It 

describes MIFs’ associated with two hydrogen bond donors on the spatial distance from 6.40 to 

6.72 Å, and connects structurally different elements, even for the compounds within the same 

subset. For some compounds, same variable connects MIFs’ associated with two amino groups of 

the polymethylene linker, feature that is usually considered beneficial for anti-AChE activity [58]. 
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Variables O-O 144 (11.52-11.84 Å) and 161 (16.96-17.28 Å) provide the same type of information 

as variables 143, 150, 156, and 158 in OMEGA model, although distances are slightly different.  

 In the N1-N1 block, variable 234 (5.76-6.08 Å) has the most positive impact within the 

block, although it is not expressed for the most active compounds in the dataset. This variable 

could offer the information on favourable pharmacophoric pattern for binding to the PAS. In the 

tacrine-xanomeline dimers, it connects MIFs’ associated with nitrogen of thiadiazoline ring and 

with the tetrahydropyridine nitrogen, or with the amide nitrogen. In the tacrine-benzene dimers 

variable connects MIFs’ associated with the two alkoxy oxygens on the benzene ring. Therefore, 

the presence of two hydrogen bond acceptors at spatial distance 5.76 to 6.08 Å could be considered 

as favourable for binding to the PAS. Variable is expressed only in the ROCS model. Variables 

278 (19.84-20.16 Å) and 280 (20.48-20.80 Å) are comparable with the variables 263-268 in 

OMEGA model.  

 Variable DRY-O 475 (13.76-14.08 Å) provides the same information as variable 455 in 

OMEGA model. Also, it has the most positive impact within this block. This variable describes 

slightly different structural fragments of tacrine-xanomeline dimers, comparing to OMEGA model, 

since these compounds are present in more extended conformations in ROCS model. It connects 

DRY area related to xanomeline fragment with the O field, associated with either protonated 

pyridinium nitrogen or distal amino group of the linker, depending on the linker length, and on 

conformation of the particular compound. Variable DRY-O 496 (20.48-20.80 Å) nicely 

differentiates the most active compounds from the rest of the set, and is comparable to variable 477 

in the OMEGA model. Variable O-N1 805 (15.68-16.00 Å) has the highest positive impact on the 

model, and along with the related variables (803 and 806) provides the same information as the 

variable 768 in OMEGA model.  
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 In O-TIP block, variable 888 (7.68-8.00 Å) provides the same type of information as 

variable 849 in OMEGA model, about structural elements favourable for simultaneous binding to 

AS and PAS of the enzyme. Variable O-TIP 930 (21.12-21.44 Å) is expressed only for the most 

active compounds in the dataset and connects MIFs’ associated with pyridine nitrogen of tacrine 

subunit and with the most distal part of dual tacrine-xanomeline or tacrine-benzene heterodimers.  

Please put the Figure 3 here 

3.4 Model based on VINA docked conformations  

The most important variables for this model are shown in Figure 4. The expression of the variables 

for all compounds is given in Supplementary material, Table S6.  

 Variable DRY-DRY 66 (21.12-21.44 Å) has moderate negative impact on the model, and is 

expressed only for the less potent compounds. Variable connect MIFs’ associated with the two 

distal benzyl groups of pyridinium dimers. In dual AChE inhibitors, the one aromatic group 

interact with AS (Trp 84), the chain spanning along the active site gorge, and the other aromatic 

moiety interacts with PAS (Trp 286). The influence of linker length on AChE inhibition potency is 

well documented in the literature [59]. So, this variable shows that too long linker in the dual 

binding inhibitors cause decrease in inhibition potency, because of the lack of proper positioning 

of aromatic moiety in the PAS, and its interaction with Trp 279.  

 The variable 123 (8.64-8.96 Å) has high positive impact in the O-O block. In the different 

subsets, this variable describes structurally different elements of the compounds. Variable connects 

MIFs’ associated with the protonated pyridinium nitrogen and with the amino group of linker close 

to tacrine moiety, in tacrine-xanomeline dimmers; or MIFs’ associated with the two amino groups 
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of the linker in tacrine-benzene dimers, and in quinazolinimine heterodimers. The O-O variable 

135 (12.48-12.80 Å), resembles variables 143 in OMEGA, and 147 in ROCS model, and has very 

low impact on the model. Variable 147 (16.32-16.64 Å) connects MIFs’ associated with the 

protonated pyridinium nitrogen and the distal linker amino group of tacrine-benzene dimers. It 

resembles variable 158 in the OMEGA model, and variable 161 in the ROCS model.  

 The N1-N1 block provides similar type of information as in other two models; variable 241 

(15.68-16.00 Å) gives the same type of information as somewhat longer variables (> 18.00 Å) in 

other two models. In DRY-O block, variable 427 (13.76-14.08 Å) provides the same information 

as variables 455 and 475 in other two models. The same is true for variable 444 (19.20-19.52 Å), 

and variables 477 and 496 in OMEGA and ROCS models, respectively.  

 In O-N1 block, variables 697 (8.00-8.32 Å) and 698 (8.32-8.64 Å) have moderate negative 

impact on the whole model. These variables depict the same pharmacophoric pattern as variable 

745 in OMEGA model, positively correlated with the potency. Variables connect MIFs’ associated 

with the distal amino group of the linker, and with the alkoxy substituents on the benzene ring in 

tacrine-benzene dimers. Such pharmacophoric pattern is perceived as favourable for binding to 

PAS in OMEGA model, but as unfavourable in the model derived by using the docked 

conformations. Variable O-N1 723 (16.32-16.64 Å) has the overall highest positive impact on the 

model, and provides the comparable information as variables 768 and 805 in OMEGA and ROCS 

model, respectively.  

 The variable O-TIP 791 (7.36-7.68 Å) describes the same structural fragments of 

compounds as variables 849 and 888 in OMEGA and ROCS model, respectively; but it has very 

low positive impact on the model derived from docked conformations. Variable 832 (20.48-20.80 
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Å) provides the same information as variable 930 in ROCS model, and is expressed only for the 

most active compounds in the set. 

Please put the Figure 4 here 

Please put the Table 3 here 

The most important variables, their expression, and the related structural elements of 

compounds are shown in Table 3. Regardless of conformation, all three models have good 

statistics and predictivity. Comparative analysis, as presented in Table 3, shows that the most 

important variables are expressed in all three models. Structural elements of the compounds that 

have favourable influence on anti-acetylcholinesterase potency are:  

- Protonated pyridinium nitrogen (of the tacrine subunit) and distal linker amino group; or 

the two amino groups of the linker, at a distance greater than 14 Å, as described by long O-

O variables. 

- Protonated pyridinium nitrogen (O) and distal DRY area (xanomeline or benzene moieties), 

which probably interacts with PAS residues, described by variables 477, 496, and 444 in 

OMEGA, ROCS, and VINA models respectively. 

- Proximal amino group (O) of the linker and alkoxy substituents on the benzene ring, or 

imino group of quinazolineimine ring (N1), described by variables 768, 805 and 723 in 

OMEGA, ROCS, and VINA models, respectively. These variables have the highest 

positive impact in all models. 

- Protonated pyridinium nitrogen (O) and endmost part of the molecules (TIP), as described 

by variables 876, 930, and 832 in OMEGA, ROCS, and VINA models, respectively. 
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 Everything so far described emphasizes the importance of protonated pyridinium nitrogen 

for AChE inhibition activity. According to the crystal structures of AChE co-crystalized with the 

tacrine and tacrine-related dual inhibitors, protonated pyridinium nitrogen forms hydrogen bond 

with backbone carbonyl group of His 440, the residue of the catalytic triad [60]. Dual 

quinazolinimine-containing compounds (12-32) have structural elements favourable for anti AChE 

activity, similar to the tacrine based inhibitors. This is revealed by the intensive DRY-O and O-TIP 

variables (455 and 875, OMEGA model), expressed for the both subset of compounds.  

Heterocyclic nitrogen of quinazolinimine containing compounds has the higher pKa value, 

comparing to tacrine nitrogen, and consequently is not protonated at assay pH. Therefore, the 

variables important for AChE activity, O-O 158 and DRY-O 477, which connect MIF’s associated 

with protonated heterocyclic nitrogen with other structural elements of tacrine-based compounds, 

are not expressed for quinazolinimine containing compounds. Providing the importance of such 

observation for the interpretation of the models, we estimated protonation sates by independent 

software, ADMET Predictor (Simulations Plus, Inc.) [61], for the two representative compounds, 

that belong to dual quinazolinimines (compound 16), and to tacrine benzene dimers (compound 

107). The results obtained were in accordance with protonation states ascribed by Pentacle. 

Predominant microstates, on the experimental conditions (pH 8.00), show the protonated 

heterocyclic nitrogen of tacrine moiety in compound 107, while the ‘pyridinium’ nitrogen of 

quinazolineimine in compound 16 is not protonated, see Table S7 and Figures S8 and S9 in 

Supplementary material. Therefore, the lack of the protonation of heterocyclic nitrogen could be 

considered as the main reason for the lower potency of quinazolinimine dimers. 

The most important structural element of the compounds, having negative impact on anti-

AChE activity, in all three models, is the presence of MIFs’, at spatial distance greater than 18 Å, 
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associated with two HBA. Such structural elements are two oxime oxygens of bispyridinium 

compounds, and two unprotonated heterocyclic nitrogens of homodimeric quinazolinimines. 

 The major differences between three models we found for the short variables (< 8.00 Å). 

We have tried to identify short variables that can describe specific structural elements favourable 

for binding to the AS or to the PAS of the AChE. Such variables are identified in the three blocks, 

N1-N1, O-N1 and O-TIP (Table 2.), but they were not expressed in all models, or did not have the 

same impact on the models. We have built separate models only for tacrine-related dual inhibitors 

(68-110) (results not shown) in order to find variables that describe favourable structural elements 

for binding to PAS. Although we obtained statistically relevant models, short variables had even 

lower intensities in PLS models than in the original model. Generally, we had the problem with 

interpretation of short variables, because they were related to different structural elements of the 

compounds, even within the same subset. This is especially evident in the N1-N1 block, for all 

three models reported. Short variables have high positive impact on the models, but the important 

common structural features relevant for high potency cannot be anticipated. Considering the fact 

that short variables have different influence (positive or negative), and impact (high or low) in 

different models, we are able to conclude that they are less interpretable in describing structure-

activity relationships. 

 The other difference between three models lies in different expression pattern for DRY-

DRY variables (see PLS coefficients plots, Figure 1). In OMEGA model the short variables are 

negatively correlated with potency, and longer variables are positively correlated with potency. In 

model based on VINA docked conformations we found reverse situation. In ROCS model all 

DRY-DRY variables were positively correlated with potency. So far we cannot offer explanation 

for this. It is also unusual that all three models recognized HBD and HBA interactions as the most 
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important for the potency of compounds, even more important then hydrophobic interactions, as 

revealed by intensities of variables in the O-O and O-N1 blocks. We did not expect such result, 

considering the fact that AChE active site gorge is lined with 14 aromatic aminoacid side chains. 

The importance of hydrophobic interactions could be anticipated only from DRY-O and O-TIP 

variables of high intensity (see Table 2), expressed for the most active compounds. 

3.5 Molecular interaction fields of AChE active site 

We have calculated molecular interaction fields (MIF's) defining the box that include the AChE 

active site gorge, and using the probes that mimic important structural elements of the ligands in 

the dataset. Those were: N1= probe which mimic protonated pyridinium nitrogen; N1: probe, 

resembles amino group of the linker, and the DRY probe mimicking aromatic moieties of 

inhibitors (tacrine and similar). Those structural elements are common to majority of inhibitors 

included in the set.  The OC1 probe resembles the alkoxy substituents on the benzene ring of the 

compounds 68-79 and 97-110. The fields obtained by N1= probe on the isocontour level of –8.0 

kcal/mol are presented in Figure 5A. The important minima are located near backbone carbonyl 

group of His 440, hydroxyl group of Ser 200 side chain, and carboxyl group of the Glu 199 side 

chain. The former two residues belong to the catalytic triad, and the later one is also important for 

ACh hydrolysis, because it stabilizes the transition state in Ser 200 acylation, via electrostatic 

interactions with imidazole ring of the His 440. These results are also in accordance with the 

assumption that protonated nitrogen of the tacrine interacts with the backbone carbonyl of His 440, 

emphasizing the importance of such protonation for the AChE inhibition potency. The average 

distance between backbone carbonyl O of the His 440 and centroid defined on aromatic ring of the 

Trp 279 is 16.50-17.50 Å in various AChE crystal structures [60]. This distance corresponds to 

DRY-O variables 437-439 (in all three models), which are expressed for the majority of more 



Page 25 of 60

Acc
ep

te
d 

M
an

us
cr

ip
t

23 

 

potent compounds, and usually connect MIFs’ associated with pyridinium nitrogen and distal 

aromatic ring of tacrine comprising compounds (68-110). The DRY field on isocontour level of –

2.0 kcal/mol is shown in Figure 5B. Three important minima are found, located between Trp 279 

and Tyr 70 (PAS), and between Trp 84 and Phe 330 (AS). The third important minimum is found 

near Trp 432. Location of the DRY probe fields is in accordance with the well-known 

experimental and theoretical results about binding of dual inhibitors to AChE. 

 The fields of the N1: probe are found near hydroxyl group of Ser 286, located at the rim of 

active site gorge, on the opposite side of typical PAS residues. Relatively large minimum of the 

same probe is found near backbone carbonyl group of Trp 279; the side chain amino group of Asn 

280; and the side chain carboxyl group of Glu 278. In AS site, N1: probe minima are found near 

backbone carbonyl group of Trp 84; as well as near side chain carbonyl (amido) group of Asn 85. 

Those fields are shown on Figure 5C on the isocontour level of –8.00 kcal/mol. Minima for OC1 

probe are found near the backbone carbonyl group of Trp 279, the side chain amido group of Asn 

280, and near hydroxyl group of Ser 286 side chain (Figure 5D). Closer visual inspection of 

docking solutions for 68-80 and 97-110, showed that amino groups of the linker and alkoxy groups 

on the benzene ring are not close to any of the amino acid residues found by GRID, as possible 

sites of interactions with N1: and OC1 probe. In this case we couldn’t relate docked conformations 

of the compounds and calculated MIF’s for those two probes. 

Please put the Figure 5 here 

4. Predictivity of the models 

Internal predictivity of the models was tested by cross-validation methods (LOO, LTO and RG). 

However, q2 is by some authors considered as necessary, but not sufficient method to test the 
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predictivity of QSAR models [62]. Therefore, we randomly divided the original set on the training 

(78 compounds, designated as ‘reduced training set’) and test set (32 compounds, designated as 

‘test set 1’), to estimate the r2 predictive value. This was done for all three types of conformations, 

OMEGA, ROCS and VINA.  Compounds which belong to the test set 1, were marked by asterisk 

in Table 1. PLS statistics for the models derived from the reduced training set (for OMEGA, 

ROCS, and VINA conformations), did not differ significantly from the original set, that includes 

110 compounds (See Table S10, Supplementary material). Moreover, models obtained included all 

important variables from the original models, as described above. The r2 predictive values and 

standard error of prediction (SDEP) for the test set 1, are shown in Table 4 (the first three entries). 

Experimental vs. predicted values are given in Table S11 (Supplementary material) and in Figure 

6. As with the original set, the model derived from ROCS conformations had superior predictive 

ability, comparing to models derived from OMEGA minimum, and the VINA docked 

conformations, with r2 = 0.834 (3LV). In all test sets, predicted pIC50 values, for majority of the 

compounds, were within the log unit comparing with experimental values. In OMEGA test set, 

some compounds appeared as outliers, namely 15, 107 (underestimated pIC50), and 65, 84 

(overestimated pIC50). Compounds 15 and 107 were in bent conformations, so the important long 

variables of high intensity (O-O 158, DRY-O 477 and O-N1 768) were not expressed for those 

compounds. This can be considered as the main reason for the lack of predictivity for those 

compounds.  In ROCS test set, predicted pIC50 for both of these compounds (now present in 

extended conformations), fall within the range of one log unit from the experimental ones.  

Compound 65 was outlier in all three test sets. So far, we cannot offer explanation for this. Larger 

differences among r2
pred values exist, comparing to q2 (RG). This can be seen from r2

pred values 

derived from test set 1, based on OMEGA, ROCS and VINA conformations of the compounds 
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(0.752, 0.834, and 0.679, respectively) and q2 (RG) derived from the original set (0.64, 0.75, and 

0.65). The r2
pred is more sensitive on conformations used. 

 The division of set on the training and test set usually gives satisfactory predictive 

statistics, since it is often the case that compounds present in test set are congeners, or structurally 

very similar to the compounds in the training set. What we examined next, is weather the models 

derived are predictive for the structurally dissimilar compounds, and for compounds for which 

pIC50 values were determined on the different enzyme source (human AChE). Similar 

investigation was done by Bernard et al. [63]. They used the training set of 82 N-benzylpiperidine 

derivatives, whose inhibitory data were determined on mouse AChE, and test set of 29 N-

benzylpiperidines with inhibitory data tested on human AChE. Good predictivity was achieved, 

demonstrating the ability of the model to predict the potency of the compounds tested on the 

different enzyme source, and in slightly different assay conditions (pH, temperature).  

  For the test set 2, we collected totally 40 compounds, comprising: 2,4-disupstituted 

pyrimidines (111-119, structurally dissimilar and tested on HuAChE), dual tacrine inhibitors (121-

123, structurally similar, but tested on HuAChE), piperidine derivatives (124-134, structurally 

dissimilar and tested on EeAChE), indanone derivatives (135-145, structurally dissimilar and 

tested on EeAChE) and tacrine-ferulic acid dimers (145-150, structurally similar and tested on 

EeAChE), Scheme 3. The original models (OMEGA, ROCS and VINA) derived from 110 

compounds, were used for the prediction. Statistics for the external predicitivity (r2
pred and SDEP) 

is given in Table 4 (the last three entries), experimental vs. calculated pIC50 values are given in 

Table S12 (Supplementary material) and in Figure 6. It is obvious that r2
pred is highly sensitive on 

conformations used. It changes from poor, 0.469 (OMEGA model) to satisfactory predictivity of 

0.740 (for VINA model). Potencies of the some of 2,4-disupstituted pyrimidines were less well 
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predicted in OMEGA and ROCS test set 2. These compounds are significantly smaller than 

compounds in the training set. Probably that those compounds even do not bind to both AS and 

PAS of AChE simultaneously, and therefore produce less hydrophobic contacts with aminoacid 

residues inside AChE active site gorge. Individual contributions from many short variables 

expressed for those compounds, give rise to the overestimation of their predicted pIC50 values. 

Surprisingly, pIC50 for compounds 148 and 149 (OMEGA and ROCS test set 2, respectively), were 

also less well predicted, although compounds are similar to tacrine-benzene dimers (68-79 and 97-

110) and tested on EeAChE, without the need for IC50 renormalization. For the conformations used 

for those compounds (bent conformation in OMEGA test set 2), long variables having high 

intensities in the model were not expressed, causing the underestimation of their pIC50 values. For 

piperidine derivatives 133 and 134, OMEGA and ROCS model overestimated pIC50 values. 

Potencies of those compounds are fairly well predicted in VINA test set 2. The only outlier in 

VINA test set 2 was compound 135 (but fairly well predicted in OMEGA and ROCS test set 2); so 

far we could not offer explanation for this. 

Both methods for the estimation of predictivity (division on training and test sets, and 

employment of truly external, and structurally dissimilar test set) gave good predictive statistics, 

expressed as r2
pred (0.834 for ROCS test set 1 and 0.740 for VINA test set 2), considering large 

structural diversity of compounds in training and test sets. VINA model was highly successful in 

predicting potencies for compounds belonging to test set 2, structurally very dissimilar from the 

training set, and tested on the different enzyme source. Interestingly, predictivity of the original 

model derived from 110 compounds, was not sensitive on conformations used (similar q2 values 

for OMEGA, ROCS, and VINA models), while predictivity of the external test set 2 was highly 

influenced by the conformations used (large discrepancy between r2 of OMEGA, ROCS and 
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VINA, for the test set 2). The test set 2 was best predicted by VINA model, emphasizing the 

importance of using conformations built in reference to geometrical restrictions of AChE active 

site gorge.     

            Please put the Scheme 3 here 

Please put the Table 4 here 

Please put the Figure 6 here 

5. Models based on 2D descriptors 

Because it seemed that all three models, regardless on conformation used, contained the 

similar chemical information about structure-activity of AChE dual reversible inhibitors (although 

predictivity of the models was sensitive on conformations used), we have built model based on 

descriptors derived from the 2D structures of the compounds. Following blocks of 2D-dependent 

descriptors [64] from E-Dragon software [65] were considered: constitutional, functional group 

counts, topological, geometrical, atom centred fragments, and molecular properties. Descriptors 

were visually inspected and those having low or no variance manually excluded. The rest of 

descriptors, along with activity of compounds were imported in BILIN program [66], and 

systematic search up to four variables was performed. Model having the best statistics, obtained 

for the initial set of 110 compounds is given in Equation 1. Model built using the same descriptors 

for 150 compounds (training and test set 2) was still statistically valid, having something inferior 

statistics, Equation 2. Numerical values of descriptors for all compounds are given in Table S13. 

There is insignificant correlation between descriptors used, r2 < 0.1. 
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p(IC50) =   0.716 (± 0.15)  nR10 + 1.113 (± 0.25)  N-070 + 5.446 (± 0.24)    Equation 1 

(n = 110; r = 0.827; s = 0.697; F =  115.710; Q2 = 0.656; sPRESS = 0.728) 

 

p(IC50) =   0.653 (± 0.16)  nR10 + 0.645 (± 0.27)  N-070 + 5.736 (± 0.22)    Equation 2 

(n = 150; r = 0.700; s = 0.862; F =  70.598; Q2 = 0.465; sPRESS = 0.883) 

n - number of objects, r - correlation coefficient, s - standard deviation,  F - Fischer F test, Q2 - 
leave one-out squared correlation coefficient,   sPRESS - standard deviation of the leave one-out 
cross-validated equation.  

Both descriptors in correlations have a positive sign, so high potency of compounds is 

associated with increasing number of structural fragments described by the both of nR10 (number 

of 10-membered rings (from the pool of constitutional descriptors)) and N-070 (defined as number 

of Ar-NH-Al fragments (from the pool of the atom-centered fragments)). Visual inspection of the 

numerical values of descriptors given in Table S13 (Supplementary material) show that subsets 

having high potency (tacrine-multialkoxy benzenes and tacrine-xanomelines) indeed comprise 

both types of fragments, but both structural elements are ascribed to tacrine moiety alone (see 

Scheme S14, Supplementary material). For the homodimeric quinazolinimines and heterodimers of 

quinazolinimine and lipoic acid, only nR10 descriptor have a constant value of 2, but those 

compounds lack the N-070 fragment, due to double bond between central ring of the quinazoline 

moiety and the =N– connected to it. Bis-pyridinum compounds, or N-benzylpiperidine derivatives 

do not comprise condensed rings, or comprise just one moiety with condensed six-membered 

rings, and those compounds generally exert lower potency.  

Despite fair statistics, predicted pIC50 values (Table S13 in Supplementary material) clearly 

show that the both models classify compounds according to the structural classes, as described 

above, but cannot distinguished molecules by their potencies within each class.  
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6. Conclusions 

The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on 

the set of 110 structurally diverse AChE reversible inhibitors. We can conclude that for three sets 

of conformations used, all models derived had good statistics and predictivity. The most important 

variables, having the high impact, were expressed in all three models. The presence of HBA and 

HBD groups, at specific, relatively large distances is revealed as highly significant for the potency. 

Those groups are: protonated pyridinium nitrogen in the AS, amino groups of the linker, and the 

presence of electron-rich (alkoxy) substituents in moieties that most probably interact with PAS. 

However, the method failed to recognize specific structural elements favourable for binding to 

either the AS or the PAS of the AChE. Variables that can be constrained to either of those two 

regions were expressed usually for all compounds, and are related to different structural elements, 

even within the same subsets of the compounds and had different pattern of expression in the 

models. Therefore, the short variables were less informative in explaining SAR of the dataset used. 

MIF’s calculated for the AChE using the N1= (pyridinium nitrogen) and DRY probes enabled us 

to relate long DRY-O variables with aminoacid residues belonging to catalytic triad (His 440) and 

PAS (Trp279 and Tyr 70), that are important for the ligand binding. 

Predictivity of the models was tested by the division of the original set on the training and 

test set, and also by the external test set comprising 40 molecules (test set 2), structurally dissimilar 

comparing to initial 110 AChE inhibitors. Some of those compounds were tested on different 

enzyme source (HuAChE). Predictivity of the models for the test set 2 was highly dependent upon 

conformation used. Model based on VINA docked conformations proved to be superior over other 

two models in predicting inhibition potency for the truly external test set (test set 2), reflecting the 

need for using conformations built according to geometrical restrictions of AChE active site gorge.  
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In analysis of the initial models, based on OMEGA, ROCS and VINA conformations, it seemed 

that all three models gave the same chemical information about favourable structural elements for 

AChE inhibition potency. But the predictivity of the external, structurally disimilar test set, 

emphasized the importance of the conformation of compounds used in the models.  

The models based on 2D descriptors, derived for the sets comprising 110 compounds and 

150 compounds, gave fair statistics, but both models only classified compounds according to the 

structural classes, and were not able to distinguish molecules by their potencies within each class.  

So far published 3D QSAR studies of AChE reversible inhibitors [67], were mostly limited 

on CoMFA/CoMSIA (alignment dependent) models, derived from sets of compounds belonging to 

one class of AChE inhibitors (tetrahydroaminoacridines, N-benzylpiperidines and piperazines, 

carbamates, etc.). Usually such models, have very good statistics (r2>0.9 and q2>0.7), but can be 

applied for prediction of inhibition potency of only the narrow structural class of compounds. Our 

study emphasized the benefits of using the alignment independent descriptors. The set employed in 

this study was, so far, the most structurally diverse set of AChE reversible inhibitors used for 3D 

QSAR modelling. Chemical information condensed and enclosed by the models was proved 

comprehensive in potency predictions of another, structurally dissimilar, test set. 
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Table 1 Experimental pIC50 for the compounds 1-110  

Comp. 
No. pIC50 

Comp. 
No. pIC50 

Comp. 
No. pIC50 

1* 5.921 38 6.330 75* 8.426 
2* 6.567 39 5.031 76 8.506 
3 7.796 40* 5.455 77 8.417 
4 7.584 41 5.848 78 8.812 
5 5.398 42* 5.846 79 8.932 
6 7.886 43 5.863 80* 8.016 
7* 7.432 44 6.036 81 7.200 
8 7.276 45 6.143 82 7.360 
9 7.796 46* 5.551 83 7.660 
10 5.638 47 5.710 84* 7.580 
11 6.276 48* 4.684 85 7.830 
12* 6.267 49* 4.943 86* 7.870 
13 6.480 50 4.932 87 7.970 
14 6.692 51 6.236 88 7.990 
15* 7.310 52 5.939 89* 7.920 
16 6.251 53 6.055 90 7.970 
17 7.678 54 5.351 91 8.070 
18 6.217 55 6.468 92* 8.060 
19* 6.752 56 5.762 93 8.180 
20 7.745 57 5.684 94 7.640 
21* 6.539 58* 5.099 95 8.190 
22 8.174 59 5.879 96* 8.210 
23 6.815 60 5.775 97 7.564 
24 7.119 61 5.337 98* 7.722 
25 6.271 62 4.527 99 8.384 
26* 5.976 63 5.842 100* 8.352 
27 6.207 64 4.996 101 8.714 
28 6.101 65* 4.588 102 8.346 
29* 7.102 66 6.161 103* 8.267 
30 7.187 67* 5.262 104 8.379 
31 7.236 68 7.032 105* 8.627 
32 4.842 69 7.583 106 8.312 
33* 5.547 70 8.194 107* 8.127 
34 5.339 71* 7.971 108 8.236 
35 5.358 72* 8.728 109 8.562 
36 6.129 73 8.947 110 8.217 
37 5.712 74 8.939   

             *Compounds included in the test set 1. 
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   Table 2 Statistics for the PLS models derived, based on different conformations. 

 LV SSX SSXacc SDEC SDEP R2 R2
acc Q2

acc 
(5RG) 

Q2
acc 

(LTO) 
Q2

acc 
(LOO) 

1 34.73 34.73 0.77 0.80 0.60 0.60 0.57 0.60 0.58
2 8.48 43.21 0.66 0.73 0.71 0.71 064 0.68 0.65 

O
M

EG
A

 3 13.62 56.83 0.63 0.73 0.03 0.73 0.64 0.66 0.65 
1 39.63 39.63 0.71 0.73 0.67 0.67 0.65 0.62 0.65 
2 7.78 47.40 0.56 0.62 0.12 0.79 0.74 0.69 0.75 

R
O

C
S 3 3.91 51.31 0.48 0.62 0.05 0.84 0.75 0.72 0.76 

1 36.76 36.76 0.75 0.77 0.63 0.63 0.60 0.60 0.60 
2 7.69 44.45 0.63 0.70 0.11 0.74 0.67 0.68 0.68 

V
IN

A
 

3 4.21 48.66 0.55 0.73 0.06 0.80 0.65 0.66 0.66 
Abbreviations: SSX – X variable explanation, SDEC-Standard Deviation of Error of Calculation, SDEP-Standard 
Deviation of Error of Prediction. The ‘acc’ – states for cumulative value.  Validation methods used for calculation of 
q2 are: random groups (RG), leave two out (LTO), and leave one out (LOO). 

Table 3 The most important variables in the models based on different conformations 

Block type OMEGA ROCS VINA Structural elements* Expression 

DRY-DRY / / 66 (31.12-21.44) endmost benzene rings of 
bispyridinium 
compounds 

Only for less potent  

O-O / 128 (6.40-6.72) 114 (5.76-6.08) miscellaneous Highest negative impact. 
For majority. 

 147 (14.08-14.40) 144(11.52-11.84) Low impact dNH-Npyr or pNH-dNH For the most active 

 150-158 (16.96-
17.92) 

161 (19.96-17.28) 147 (16.32-16.64) dNH-Npyr or pNH-dNH For the most active 

N1-N1 / 234 (5.76-6.08) / Binding to PAS Most positive within the 
block. For majority 

 263-268 (18.24-
20.16) 

278, 280 (19.84-
20.80) 

241 (15.68-16.00) Oxime oxygens of 
bispyridinium dimmers 

Only for less active 
compounds 

DRY-O 455 (13.76-14.08) 475 (13.76-14.08) 427 (13.76-14.08) Tac-dNH For majority 

 463 (16.32-16.64) / 435 (16.32-16.64)  Tac-dNH For majority 

 477 (20.80-21.12) 496 (20.48-20.80) 444 (19.20-19.52) Benzene-Npyr Only for the most active 

O-N1 745 (7.68-8.00) 
Positive impact 

/ 696-698 (7.68-8.64) 
Negative impact 

dNH- Obenz in tacrine 
benzene dimers 

For majority 

 768 (15.04-15.36) 805 (15.68-16.00) 723 (16.32-16.64) pNH-Obenz Highest positive impact 
For majority 

O-TIP 849 (8.00-8.32) 
Positive impact 

888 (7.68-8.00) 
Positive impact 

791 (7.36-7.68) 
Low negative 

impact 

Npyr-tac, dNH-Obenz  For majority 

 876 (16.64-16.96) / / dNH-tac For majority 

 / 930 (21.12-21.44) 832 (20.48-20.80) Npyr-endmost part Only for the most active 
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*Explanations: tac – tacrine moiety; dNH-distal amino group of the linker, in respect to tacrine moiety; pNH-proximal 
amino group of the linker in respect to tacrine moiety, Npyr-pyridinium nitrogen, Obenz-alkoxy substituents on 
benzene ring.  

 

Table 4. Predictive ability of the models (expressed as r2
pred values) for the test set 1 (OMEGA, 

ROCS and VINA conformations); and the test set 2 (OMEGA, ROCS and VINA conformations) 

for the different dimensionalities of the models (number of LV’s). The best values for r2
pred and 

SDEP are given in bold. 

 

  1 LV 2LV 3LV 4LV 5LV 

  r2 SDEP r2 SDEP r2 SDEP r2 SDEP r2 SDEP 

OMEGA 0.750 0.641 0.725 0.672 0.752 0.638 0.622 0.788 0.609 0.801 

ROCS 0.702 0.699 0.777 0.605 0.834 0.522 0.793 0.582 0.795 0.580 

T
es

t s
et

 1
 

VINA 0.627 0.782 0.679 0.725 0.657 0.750 0.619 0.790 0.515 0.892 

OMEGA 0.360 0.803 0.397 0.779 0.423 0.762 0.314 0.814 0.469 0.731 

ROCS 0.452 0.739 0.581 0.647 0.460 0.734 0.482 0.719 0.533 0.683 

T
es

t s
et

 2
 

VINA 0.556 0.655 0.670 0.565 0.672 0.563 0.740 0.501 0.712 0.528 
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Scheme 1 Structures of the compounds 1-59, used as dataset 
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Scheme 2 Structures of the compounds 60-110, used as dataset 
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Scheme 3 Structures of the compounds 111-150, used as test set 2 
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Figure captions 

Scheme 1 Structures of the compounds 1-59 used as dataset 

Scheme 2 Structures of the compounds 60-110 used as dataset 

Scheme 3 Structures of the compounds 111-150, used as test set 2 

 

Figure 1 PLS coefficients plots (3LV) for the obtained models, based on: (a) OMEGA minimum 

energy conformations, (b) ROCS conformations, (c) docked conformations. The type of variable 

blocks are indicated by color: yellow, DRY-DRY; red, O-O; blue, N1-N1; green, TIP-TIP; cyan, 

DRY-O; magenta, DRY-N1; navy blue, DRY-TIP; dark green, O-N1; pink, O-TIP; grey, N1-TIP. 

Variables assigned by red coloured numbers are specific for the particular model. 

Figure 2 The most important variables derived from model based on OMEGA minimum energy 

conformations: (a) O-O 158 (16.96-17.92 Å), (b) DRY-O 455 (13.76-14.08 Å), (c) DRY-O 477 

(20.80-21.12 Å), (d) 745 O-N1 (7.68-8.00) (e) O-N1 768 (15.04-15.36 Å), (f) O-TIP 875 (16.32-

16.64 Å).  

Figure 3 The most important variables derived from model based on the ROCS conformations: (a) 

O-O 128 (6.40-6.72 Å), (b) O-O 147 (12.48-12-80 Å), (c) N1-N1 234 (5.76-6.08 Å), (d) O-N1 805 

(15.68-16.00 Å), (f) O-TIP 930 (21.12-21.44 Å). 

Figure 4 The most important variables derived from model based on VINA docked conformations: 

(a) DRY-DRY 66 (21.12-21.44 Å), (b) O-N1 697 (7.68-8.00 Å), (c) O-TIP 791 (7.36-7.68 Å) 

Figure 5 Calculated MIF’s for AChE active site gorge: A. N1= probe, B. DRY probe, C. N1: 

probe, D. OC1 probe.  
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Figure 6. Experimental vs. predicted pIC50 values for test set 1 (a) OMEGA conformations, (b) 

ROCS conformations, (c) VINA conformations; and test set 2 (d) OMEGA conformations, (e) 

ROCS conformations, (f) VINA conformations. 
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Figure 1 PLS coefficients plots (3LV) for the obtained models, based on: (a) OMEGA minimum 

energy conformations, (b) ROCS conformations, (c) VINA docked conformations. The type of 
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variable blocks are indicated by color: yellow, DRY-DRY; red, O-O; blue, N1-N1; green, TIP-

TIP; cyan, DRY-O; magenta, DRY-N1; navy blue, DRY-TIP; dark green, O-N1; pink, O-TIP; 

grey, N1-TIP. Variables assigned by red coloured numbers are specific for the particular model. 

 

Figure 2 The most important variables derived from model based on OMEGA minimum energy 

conformations: (a) O-O 158 (16.96-17.92 Å), (b) DRY-O 455 (13.76-14.08 Å), (c) DRY-O 477 

(20.80-21.12 Å), (d) 745 O-N1 (7.68-8.00) (e) O-N1 768 (15.04-15.36 Å), (f) O-TIP 875 (16.32-

16.64 Å).  



Page 51 of 60

Acc
ep

te
d 

M
an

us
cr

ip
t

49 

 

 

Figure 3 The most important variables derived from model based on the ROCS conformations: (a) 

O-O 128 (6.40-6.72 Å), (b) O-O 147 (12.48-12-80 Å), (c) N1-N1 234 (5.76-6.08 Å), (d) O-N1 805 

(15.68-16.00 Å), (f) O-TIP 930 (21.12-21.44 Å). 
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Figure 4 The most important variables derived from model based on VINA docked conformations: 

(a) DRY-DRY 66 (21.12-21.44 Å), (b) O-N1 697 (7.68-8.00 Å), (c) O-TIP 791 (7.36-7.68 Å) 
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Figure 5. MIF’s calculated for AChE active site gorge: A. N1= probe, B. DRY probe, C. N1: 

probe, D. OC1 probe.  
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Figure 6. Experimental vs. predicted pIC50 values for test set 1 (a) OMEGA conformations, (b) 

ROCS conformations, (c) VINA conformations; and the test set 2 (d) OMEGA conformations, (e) 

ROCS conformations, (f) VINA conformations. 
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