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Abstract — In this work some aspects of carcinogenesis are given. The importance of the
emergence of Z or H DNA structure in the gene, or in the flanking gene sequences for the gene
deletion and unusual gene recombination, is discussed. Some considerations on the role of
selective pressure (of polyamines, of Mg2+, of the various levels of topoisomerase Il, and of ATP)
in the process of oncogene amplification, are given too.

Introduction

Several genetic mechanisms involved in the activa-
tion of the cellular oncogenes have been reported.
They include point mutations, translocations, inser-
tional or deletion mutagenesis, and gene amplifica-
tion. In a series of recent reviews (1, 2) and papers
(3-6) there are plenty of data related to the ampli-
fication of some protooncogenes in various malig-
nant cells, and different models underlying a possible
mechanism of mammalian gene amplification were
given as well. There is also a number of papers link-
ing the oncogene amplifications and clinical status of
patients (7, 8, 9).

It was reported that extrachromosomal elements
such as episomes and double minute chromosome(s)—
DM(s), represent the most common carriers of am-
plified genes in human tumor cells in vivo (1, 2). It
was also suggested that episomes, the submicroscopic
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DM’s precursors, are formed by recombination within
a standard replication loop.

In several recent papers (10-13), it was suggested
that Z-DNA and/or cruciform structures, H-form
DNA, within the inverted repeats, could be, most
probably, the forms of the DNA active in recom-
bination. Z-DNA could exist in various fragments
of alternating and non-alternating purine-pyrimidine
sequences frequently encountered in the mammalian
(and human) introns (14, rev. 15).

The hypothesis

It could be supposed that incidental base mutations
(16), or some virus gene insertions, and/or increased
methylation of some DNA bases, as well as the bind-
ing of certain chemicals or proteins, could induce
the emergence of Z- or H-structures at rather unpre-
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dictable sites of the DNA molecule in vivo (17, 18,
19). For the Z-DNA it was recently reported to be
very susceptible to deletion both in vitro (20, 21) and
in vivo (15). By an analogous mechanism in vivo,
the changed (onco)gene segments (Z or Z-B-Z struc-
ture) of chromosomal DNA could be deleted by some
recombination proteins, and dislodged to the kary-
oplasm. There it could be destroyed or stabilized by
some selective pressure, in the form of either epi-
somes or clusters (DMs?).

It was shown by experiments in vitro that methy-
lation, or halogenation of C(5) of cytosine (15, 22),
stabilize the Z-DNA structure in physiological so-
lution. Chemical modification of DNA bases with
mitomycin-C, or with AAF (N-2-acetylaminofiuo-
rene) (23, 24), also stabilize the Z structure, and result
in higher potential for HIV activation and chemical
cancerogenesis, respectively. It was proved that DNA
methylation is frequently connected with the inacti-
vation of the gene transcription (25), but a few cases
of secondary malignancy induced by previous chemo-
therapy with alkylating agents were reported (26, 27).

If the Z-DNA structure is important for the (pro-
toonco) gene deletion, for (protoonco)gene amplifica-
tion in episomes (deletion—plus—episome model) (2),
in DMs or in HSR, or for the deletion of a tumor sup-
pressor gene, some inhibitors of Z-DNA stabilization
could be important to abate the chances for the loss of
the tumor suppressor gene, or for the (protoonco)gene
amplification. Intentionally, or by chance, some po-
tential inhibitors of Z-DNA stabilization, e.g. dealky-
lating agent S-azacytidine (28, 29), or the antitumor
agents, inducing the Z->B transition, such as ethid-
jum bromide (30), actinomycin D and actinomin (31),
were or are applied in the therapy of malignancies.

It was reported (1, 2) that extrachromosomal struc-
tures, such as episomes and DM(s), predominate in
tumor cells in vivo. It was suggested that episomes
as the carriers of some oncogenes appear during
an earlier stage of tumor progression. Buttler et al
(32) reported that the tumor promoter action is as-
sociated with an increased rate of protein kinase-C
and omithine decarboxylase synthesis, the enzymes
which are known to be involved in the higher produc-
tion of polyamines: putrescine, spermine and spermi-
dine. It has been shown by in vitro experiments that
polyamines, spermine and/or spermidine, in the pres-
ence of divalent cations (Ca2+, Mg2+, or putrescine)
induce and stabilize toroidal and bent DNA structure
(33, 34). So, in our opinion the pieces of the chromo-
somal DNA dislodged to karyoplasm thus, forming
the episomes — after the action of the recombinant
proteins (15), could be stabilized by polyamines in the
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same manner. For the maintenance and stabilization
of these episomes (which replicate and transcribe au-
tonomously) (1), some structures, such as spermidine
or spermine, in the presence of Mg2+ ions, ATP, and
topoisomerase 11, as a selective pressure, are needed.
It is known that these polyamines stabilize the bac-
teriophage DNA, and certain viral DNAs (33), and
that their concentration is higher in malignant than
in normal cells (35, 36, 37). In bacterial in vitro cul-
tures addition of spermidine was found to double the
transcription rate comparing to the cultures grown
without spermidine (38).

It is well documented that the Z-DNA gets stabi-
lization by higher superhelical densities created by
the action of topoisomerase II, ATP, in physiological
conditions (18, 19). It was emphasized (15) that DNA
in Z structure tends to aggregate in the presence of
polyamines. The work of Kim and Wang (39) showed
that ‘In a yeast topoisimerase double mutant TG 205
(A topl, top2-4) over half rDNA is present as extra-
chromosomal rings. The expression of Topl or Top2
gene in the strain leads to the integration of the ex-
trachromosomal DNA ring back into the chromoso-
mal rDNA cluster. And it is shown that both excision
of DNA rings and their integration into the chromo-
somes occur by recombination via homologous se-
quences.’ Does it mean that higher level of topoiso-
merase II could produce higher negative super-helical
densities of episomes (Z-structure) which could, in
the presence of polyamines, aggregate forming clus-
ters, DMS, or HSR region in chromosomes?

If the polyamines are important for the onco-
gene amplification, by the stabilization of the onco-
genic transformations, then the polyamine insuffi-
ciency should result the emergence of unstable epi-
some structures. Could this lead to some alternative
chromosome abnormality (2), or to the derogation
of episomes, and to the diminution of the oncogene
replication rates? In other words, it should lead to the
suppression of tumor propagation, or to the inhibition
of tumor promotion, what has already been shown in
vivo (40). Many agents used in the therapy of the var-
jous malignant alterations, both in vitro and in vivo,
act as inhibitors of spermine or spermidine synthesis
41-44).

Would it be of particular interest to find out whether
the application of chemotherapeutics on transformed
cells, or to virus infected cell (HIV, or some other
virus), in the presence of polyamine, ATP, Mg2+, and
various levels of topoisomerase II, in vitro could pre-
vent the emergence of resistance, as demonstrated in
bacterial system (45)?
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The implication of the considerations outlined
above calls for experiments that can give an answer
to the question of whether the radiotherapy or chemo-
therapy of such systems, rich in spermine and/or sper-
midine, destroys more efficiently the amplified onco-
genes in episomes and in DM(s) or when they are
integrated in the host chromosomes? Some evidence
supporting this idea has already been obtained (46).

Would the malignant cells with amplified onco-
genes in HSR be more susceptible to the cytotoxic
action of drugs for which topoisomerase II represent
a target (47-52)? If malignant cells with the ampli-
fied oncogenes in sequence (obtained by means of
unequal sister chromatid exchange) are more resistant
to chemotherapy or radiotherapy, does it mean that the
immunotherapy would be the most promising cure of
such malignancies, as well as of malignancies whose
genotype is associated with chromosomal deletions or
translocations?

Conclusions

Closing this consideration, one can ask: why does the
amplification of (onco)genes occur? It was shown that
DNA methylation, or DNAs interaction with certain
chemicals or proteins, inactivates expression of some
oncogenes (53, 54). If the small quantity of their prod-
ucts, i.e. proteins is needed for the cell survival, the
corresponding piece of DNA in Z-, or Z-B-Z-struc-
ture, or H-B-H-structure, could be excised by some
single-stranded endonucleases, or SOS (15) recombi-
nant system, deleted from chromosomal DNA, and
shed into the karyoplasm, stabilized by polyamines,
Mg2+, ATP, and various levels topoisomerase II, to
replicate, transcribe, and translate autonomously. So,
in some instances the greater extent of the expression
of some oncogene (55), or herpes virus transcription
products in vivo (56), was found in the case of a more
extensive DNA methylation. The rise of fos RNA in-
duction which occurs after the action of various DNA
damaging, alkylating agents was observed (57). (It is
known that fos gene encodes a nuclear protein which
bound to the transcriptional factor increases transcrip-
tion from multiple promoters, as well as from promot-
ers in the long terminal repeats of Rous sarcoma virus
and human immunodeficiency virus.)

So, in order to exclude the emergence of the phe-
nomenon of gene deletion and amplification phenom-
ena and/or to avoid the drug resistance, or to keep the
viruses in the latent forms, the inhibitors of both the
alkylation i.e. of Z-DNA structure) and of polyamine
synthesis should be examined in cell cultures in vitro
or by in vivo experiments.
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