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Abstract

A general relationship between the ring structural and the ring pseudorotational
parameters for puckered five-membered rings is derived. The relationship enables direct
calculation of the pseudorotational parameters from the known ring geometry.

The applicability of the derived relationship is demonstrated by classification ot amino-
carboxylato chelate rings in cobalt(III) complexes in terms of the pseudorotational coordi-
nates. A strong preference of the aminocarboxylato chelate ring conformations having the
Co-O-C—C torsional angle close to zero 1s observed.

INTRODUCTION

The empirical relationship between the endocyclic torsional angles and
the pseudorotational coordinates of a pentagon, introduced by Kilpatrick
et al. [1] and by Altona [2], allows an elegant classification of the ring
conformations in terms of the pseudorotational coordinates [3]. This
relationship was later derived by assuming infinitesimal displacement of a
regular pentagon from planarity [4,5].

The relationship between the torsional angles ¢,.; and the pseudo-
rotational coordinates (ring-puckering amplitude ® and phase angle w) of
a pentagon, known as the pseudorotational formula

¢k+; — Ckﬂ(l)k COS(COk + Sk-l-i + ié) i = 0, ]., 2, _2, — 1 (S — 1440 (]_)

where k signifies the choice of an origin for counting the torsional angles,
kel,2,3.4,5; i counts the angles clockwise, i = 1,2, and anticlockwise,
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1 = — 1, — 2, from the origin, i = 0 (see Scheme 1), requires that any three
torsional angles in a pentagon are linearly related

¢’k+f = al,m,k¢k+m T bl,m,k (lbk l 75 me 1:! 2: o 2: =i (23-)
where

Cr+1 Sin(8k+l T lé)

al?m?k N Crim Sin(ngrm T m(S)
Bk = ‘“’z: . sin(e,,, + 1) [cot(e,, , + 10) — cot(e,,  + md)] (2b)

On writing eqn. (1) fori = 0 and i = [, the ring-puckering coordinate may be
eliminated, giving

Ck/ckH . qbkﬂ

S0, + 10 &, (£c)

tan w, = cot(e,,, + 10) —

Repetition of the same procedure for i = 0 and i = m allows the elimination
of the phase angle as well, which then gives eqns. (2a) and (2b).

To our knowledge, eqn. (2a) has not been proved, although it was intro-
duced empirically by Pavel¢ik [6]. An important consequence of this eqn. is
that among the c,,; and ¢, ,; parameters of the pseudorotational relation-
ship, only six could be made mutually independent. This follows from eqns.
(2a) and (2b) since only three linearly independent equations of the form
eqn. (2a) may be constructed for five torsional angles. Consequently, only
s1x independent coefficients q,,, , and b,,, , may be obtained.

Whether eqn. (2a) really exists in a pentagon is of crucial importance. If
1t exists, then it may be used for an exact transformation of the ring
geometry parameters into the pseudorotational parameters.

Therefore we undertook the derivation of the relationship between three
torsional angles in a pentagon in order to check to what extent it supports

eqns. (1) and (2).
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RELATIONSHIP BETWEEN RING STRUCTURAL AND PSEUDOROTATIONAL
PARAMETERS

We derived the following relationship (see Appendix A) between three
sequential torsional angles in a pentagon (Scheme 1) starting from the
known bond distances (d, . ;) and valence angles (0, . ,):

sin ¢, ,cos¢; = A;sin¢;_, + (B] + cos0, ,cos@;,,)sin ¢, (3a)
where

A = d;_,sinb;_, (3b)

d; ,sInb; ,

B{] _ Sin Qj‘i'l(dj—l—l - dj+2cos 9j+2) (30)

] :

When ring-puckering approaches zero, eqn. (3a) coincides with eqn. (2a).
However, it 1s known that eqn. (1) works well for quite puckered rings.
Therefore, eqn. (3a) has to be transformed further in order to establish a
relationship between the torsional angles instead of the one between the
sines of the torsional angles. For that purpose we applied the following
approximation: sin ¢ = (1/3)¢(2 + cos ¢), introducing in this way an inaccu-
racy which is below 0.1° for up to ¢ = 45°. Thus, the inaccuracy 1s within
the experimental error of the determination of the angle (the approxi-
mation is much superior to the usual one, 1.e. sin ¢ ~ ¢, which for ¢ = 40°
deviates by 4°). After rearrangement, eqn. (3a) transformed 1nto

¢;.1=A;0, 1+ B o, (4a)
where
B - Bj'?’ 2 + cos ¢,
2+ coso;_,
B (2 + cos¢;_;) 1
+ | cos0. ,cos @ 2+ co59;41) C()S‘(}bj-'s,ill , 21 SOR G,
| i s+l sin ¢; ] 24 cos ¢,
(4b)

Equation (4a) has the form of eqn. (2a) as desired. Namely, by linear
combination of eqn. (3a) obtained for various j values, any three torsional
angles in the pentagon may be related. We are aware, however, that for a
complete analogy, the coefficients A; and B; have to be independent of the
ring conformation. Considering eqn. (3b), it seems that A; fulfills this
requirement rather well, 1.e. changes of bond lengths and valence angles
are small in conformational changes. In addition, a strain introduced by



212 N. Juranié et al.|J. Mol. Struct., 271 (1992) 209-226

eventual enlargement of one bond length (d;_,) may be partially compen-
sated by diminishing adjacent valence angles (0;,_,) or enlarging adjacent
bond lengths (d;,,). Hence, concerted changes keep A; constant. For the
other coeflicient, B;, the obtained eqn. (4b) is much more dlfﬁcult to analyse.
The critical part of the expression, the term in square brackets exhibits
considerable resistance to change because of its analytical form in which
the sines and cosines of the torsional angles mainly balance each other.
However, we were not able to trace analytically the eventual overall
constancy of B;.

One specific problem 1in the calculation of B, starting from the bond
lengths and valence angles is the calculation of the sines of the torsional
angles. We derived the expression for the calculation of the cosines of the
torsional angles from the bond lengths and valence angles of a pentagon
(see Appendix B). From there, one may calculate the magnitudes, but not
the signs of the torsional angles. Fortunately, in eqn. (4b), the sines of the two
adjacent torsional angles-appear. Adjacent torsions are of opposite signs
unless either of them is relatively small. In that case, the term containing
sines becomes very small and does not contribute significantly to B;.
Therefore, by assuming that adjacent torsions are of opposite signs, B; may
be calculated relatively accurately. The relevant expressions are

2 + cos ¢
0
By = B*’ 2+ cosq;_
(2 + cos¢; _,)
(2 + cos j+1) oo q’)j 3 _‘
+ | cOos QjHCOS ¢j+1 o (1 — cOog> d)_)l/z ' \/1 — COS ¢j+1
; i
2 + cos ¢,
2 + cos ¢; o8)

cos ¢; = (2d;,,d;_,sin0;sin6,,,) '+ [d?, + d? + d-2 — s g~ df

— Zdjdj_lcosﬁ 2d; .1(d; — d;_,cosb;)cosb,,, +2d;,_,d; ,cosb,_,]
(5b)
T'his 1s a method of calculating B; without relying on the torsional angles.

However, if the torsional angles are known, then B: may be calculated from
eqn. (4a) as follows:

B o ((fbj%—l N A;¢j—1)
J qb
J "
For the investigation of a correspondence between eqns. (2a) and (4a),

we shall start with the case of an equilateral pentagon. It is well known
that for an equilateral pentagon, the pseudorotational coefficients take

(6)



N. Juranié et al.|dJ. Mol. Struct., 271 (1992) 209-226 213

trivial values: ¢,,; = 1 and ¢, ; = 0. Inserting these values in eqn. (2a) one
obtains

@ 1= —1 b, 1,=2cos8d = —(1+ 5"%)[2

When ring-puckering is zero, an equilaterial pentagon becomes an equi-
angular one as well [7]. Then, from eqns. (3b) and (4b) one obtains

A = -1 B, =2cosf—1= —(1+ 5"%)/2

Therefore, the correspondence between eqns. (2a) and (4a) 1s complete 1n
this limiting case.

When an equilateral pentagon becomes puckered, the valence angles
become unequal. Then eqgn. (3b) predicts that A, has to be slightly different
from —1, although the pseudorotational formula still requires that
a, .= —1. To keep A, = —1, eqn. (3b) requires some inequality of the
bond lengths as well. Thus, an inequality of bond angles of about 4° 1n
highly puckered cyclopentane requires a bond length inequality of 0.02 A.
This difference of bond lengths is within the range of experimental error.
Consequently, the experimental data on puckered cyclopentane can
neither prove nor disprove the present theory. Therefore, the next con-
sideration is very irregular pentagons.

Aminocarboxylato chelate rings in cobalt(I1ll) complexes represent very
irregular pentagons, with respect to both bond distances and valence
angles (see Scheme 2), so they may be used for a rigorous test of the theory.
For the present investigation, two hundred aminocarboxylato chelate ring
conformations in cobalt(IIl) complexes were considered. The chelate ring
geometries were taken from the Cambridge Crystallographic Database [8].
Various kinds of N- and C, -substituted five-membered aminocarboxylato
chelates, and glycinato chelates were considered. However, data have
been taken only for the crystal structure analyses having R < 0.06. The
typical geometry and ranges of the bond distances and the valence and
torsional angles observed in the chelate rings considered are given 1n
Scheme 2.

The system has been found to obey the pseudorotational relationship
very well, since any three torsional angles are in a very good linear
relationship, as required by eqn. (2a) (Fig. 1). For the test of theory we
determined alla_, , , and 5—1;1, . (kR = 1-5) coefficients by regression analysis
of experimental torsion angles according to eqn. (2a). Then we calculated
A; and B; (j = 1-5) coefficients from the mean bond lengths and valence
angles applying egns. (3b) and (5). The comparison of the corresponding
coefficients, which is presented in Table 1, strongly supports the equality of
eqns. (2a) and (4a). We therefore conclude that the derived eqn. (4a)
properly describes the pseudorotational relationship in five-membered ring
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Fig. 1. Linear relationship between three sequential torsional angles for 200 aminocar-
boxylato five-membered chelate rings, according to eqn. (2a). Correlation coefficient of the
displayed linear plot =1, m= —1, k = 1) 1s 0.9998. For other relations investigated (I =
k+1,m=Fk—1,k=234,5), correlation coefficients were close to 0.997. (The central area
marked 1s enlarged in the upper right corner.)



215

N. Juranié et al.[J. Mol. Struct., 271 (1992) 209-226

GIVLO G — LI9GLOC — 096,06 — 08906 — 5
099G¢' 1 — 91946 1 — Y666 | — 0080¢'T — 1%
01745174720 S b6Eovy [ — 66VYY 1 — 88LEY [ — &
EV69L 1 — EIGLL'T — [L8IL'T — ¢006L' [ — 6
L8ISL T — 068VL'T — 665VL 1 — GIBLL' 1 — L
qd g e YT T g
86G6S6 | — L66GG 1 — GOLLG 1 — g
696090 — 81L6G°0 — 7£699°0 — 1
080660 — £0866°0 — 860660 — &
Go80¥ 1 — 06E0V 1 — LEVGY 1 — G
90€¢0'T — 0¢EV0 [ — GO0SO'T — L
#f\. m_.ﬁ\ ¥1— J.Hv
SurLI a[3uts ayj Jo durx sr3uts ay3 jo ((q¥ ‘qe) ((eg ‘qg) 'subo) so[due ((eg) "uba) sisAteue
(9 "ubo) so[3ue [eUOIS.I0) 'subo) so[sue soua[BA pur SYIIUI| 90US[eA puUe SY3}3Ua] puoq UOISSOI391 SO[.SUB JeUOISIO)
9} WO.IJ SIUSIIIPa0)) PUOq 9Y3 WOIJ SJUSIILO0)) UBoW 9} WO} SJUSIDJI0)) 9] WOJJ SJIUSIOJa0)) Y

i

(‘% @WAYDQ Ul UIALZ SI SULIdqUINU 3[3UB [BUOISIO) 9y ],) 'SSULI paje[ayd Oje[AXOgIeOoOoUIWE
93 u1 so[Sue [eUOISIO} [BI3UaNbas a1y} 9y} usamiaq sdiysuorjeaa xeaul[ ayj jo g ‘*y pue ¥~ g ‘¥~ Ip sjus1de0o ayj Jo uostredwo))

[ H'TI9dV.L



216 N. Juranié et al.|J. Mol. Struct., 271 (1992) 209-226

conformations. At the same time, the empirical relationships eqns. (1) and
(2) have established their theoretical buoyancy.

We consider the ability to predict the pseudorotational dynamics from a
real ring conformation to be an important achievement. This is also illus-
trated 1n Table 1 by coefficients calculated from the structural parameters
of a single ring. It may also be noted that values of B; calculated from bond
distances and valence angles (eqn. (5a)) and from torsional angles (eqn. (6))
do not differ significantly. Hence, the much simpler eqn. (6) may be used for
calculation of B; in a single ring.

CALCULATION OF THE PSEUDOROTATIONAL COORDINATES

The established equivalence of the coefficients of eqns. (2a) and (4a)
allows calculation of the pseudorotational coordinates directly from a

five-membered ring structure. By equating the corresponding coefficients,
1t follows that

A = Cr+1 . Sin(8k+1 0 5)
: Cr—1 SIN(g,_; — 0)
B, = Cf;l - singy,; + 8) [cot(e,., + 6)— cot(e,_, — )] (7)
k

which 1n combination with eqns. (2¢) and (1) gives

tan w, = cot(g,,; + 0) —. [COt(5k+1 + 0) — cot(g, , — 9)] * Pis
B, ol
= COt(Sk—l — 5) Ak - [COt(8k+1 s 5) - COt(Ek_l L (5)] . qbk—l
B up
D, = ck + (1 + tan®w,)"? (8)

k

A direct relationship between w, and ¢, and the structural parameters
1s obscured here by the presence of three pseudorotational coefficients
(€x.15 €, and c¢,) out of the nine defined in eqn. (1). Since only six of
these parameters are necessary, we shall put ¢,,, =¢, ;=0 and ¢, = 1,
to obtain

2 ¢)k+1)
tanw, = cotol 1 .
= eota(1 - 5 %
A, ¢,
— —cotd|1 + =%.XF 1)
1+ 3%
O, = ¢,(1 + tan*w, )*? 9)

Hence, the pseudorotational coordinates may be calculated without know-
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Fig. 2. Phase angle and puckering amplitude dependence on choice of an origin (w, or w,_ ;)
for counting of torsional angles in a pentagon represented as functions of w, phase angle. (A)
Equilateral, equiangular (Q, = —4/(1 + 5"%)?) pentagon; (B) irregular (, = — 0.5) pentagon;
(C) irregular (@, = — 0.3) pentagon.

ledge of the pseudorotational coefficients ¢, , ; and ¢, ;. This 1s an important
aspect in which the procedure devised here for the calculation differs from
previous procedures, which required, as the first step, the determination of
the pseudorotational coefficients ¢, , ; and c, . ;. This was done by fitting eqn.
(1) to a large set of ring conformations [9] or by calculation of the coefh-
cients from an idealized geometry of a flat ring [4]. In the procedure present-
ed here the first step is calculation of the pseudorotational coeflicients A;
and B; from a considered ring geometry. These coefficients contain the same
information as the ¢, ; and c,,; coeflicients.

The question may be raised as to how representative the coeflicients w,
and @, are for a ring. One would expect that classification of ring contor-
mations in terms of the pseudorotational coordinates does not depend
critically on the choice of an origin for measuring the torsional angles. this
would be fulfilled if, between any w, and w, . , for a ring, there 1s a difference
close to the step angle §. To get an insight into this problem we derived the
following relations from eqn. (9).

1 + tan®o
wk+1—5:arctan{cot5-[l+ 4511 -(l—tanwktané)]}
k
®,.. B, 1 + tan’w, , \'°
=—+(1 — 0) 10
o, ~ g (~tanotand) | 5mmore 1)

where @), = Ak+1/BkBk+1- ‘ .
The analysis of these relations is presented in Fig. 2. It can be seen that
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F1g. 3. Scattergram of pseudorotational coordinates, the ring puckering amplitude @, and
phase angle w, of 200 aminocarboxylato five-membered chelate ring conformtions in cobalt(III)
complexes. (Characteristic ring, from which the coefficients in Table 1 were calculated, is
marked by an asterisk (¥*).)

the choice of an origin only has no influence for a flat equilaterial pentagon
(@, = —4/(1 + 5"%)%). In other cases the phase angle may be shifted appreci-
ably. However, a shift as large as 18° is unlikely even for rings quite
different from the equilateral, equiangular one. Hence, the classification of
conformations according to the symmetry forms separated by 18° should be
mainly independent of the origin. It is interesting that in the case of a
neighboring torsion equal to zero (w, = —90°, —54°, 90°, 126°), the phase
angle remains unshifted for irregular pentagons.

In the classification of the considered aminocarboxylato chelate confor-
mations, the observed influence of zero neighboring torsion has been taken
into account. We assigned ¢, equal to ¢,, because the torsional angle ¢, is
mainly close to zero. Then the pseudorotational coordinates were cal-
culated for 200 rings, applying eqn. (9).

We should point out that a degeneracy of the phase angle, introduced by
the tangent function in eqn. (9), has been lifted in the following way:

—

2 ¢k+1):l
w, = arctan| tano| 1 -
k (5%

B @, _ 0N Ao
P = Tan (lqbk\ 1) % )

The obtained scattergram of conformational coordinates of the amino-
carboxylato chelate rings in cobalt(III) complexes, which is presented in
Fig. 3 will be discussed later.
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TRANSFORMATION OF THE PSEUDOROTATIONAL COEFFICIENTS

The pseudorotational coefficients A; and B; may be transformed 1nto the
e,.; and c,,; coefficients by applying eqn. (2a). This equation contains
coefficients «,,, , and b,,,, of which only six are linearly independent, as
previously stressed. The coefficients A;, B; and ¢,,;, ¢,,; are connected
through these. The six coefficients are defined by three equations of the
form eqn. (2a). Without any loss of generality, we may select three
equations which are obtained from eqn. (4a) by taking j =k, B + 1, kB + 2.
After writing down these equations

Q—"kﬂ — Ak(ﬁk—l + qubk
‘i’mz — Bk(f—‘)kﬂ + Ak(?f’k
¢’k—2 — (Amz s Bk+lBk+2)¢)k+1 + Ak+1Bk+2¢k (12)

and comparing them with the general eqn. (2a), the corresponding ¢, ,, , and
b, . » coeflicients are 1dentified as

a1 = Ay bl,—l,k = B,
Qg1 = By bo1r= Ay
A 91,k = Ak+2 + Bk+1Bk+2 bQ,l,k — Ak+1Bk+2
In combination with eqns. (2b) these give the six equations:
1 . |
“h —sin(e,.; + 0) [cot(e,,; + 0) — cot(e,_; — 0)]
Ck+1 Bk
Cr Q@ :
- sin(e, ., + 20) [cot(e,,, + &) — cot(e,_, — 0)]
Chia  Api
i R, :
= sin(e,_, — 20) [cot(e,, , + 0) — cot(e,_; — 0)]
= e sin(e_ — 20) [c0t(ey. + 6) — cOt(ey., — 0)
¢, Ay . B
sin(g, , — 0) [cot(e,,, + 0) — cot(e,_; — 0)]
¢, B,
cot(e,,, + 20) = (@, + 1)cot(e, ., + 0) — Q,cot(e,_; — 0)
where
Rk - Ak+1Bk+2

B,(A,,, + B, 1B, 5)

After applying the same choice of coefficients as betore (¢,.; = ¢,_, =0,
¢, = 1) one obtains

&, ., = arccot[(1 — 2@, ) cot o] — 20 + 360°
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£,_o = arccot|(l — 2R,) coto] + 20 — 360°
B,

& o=
“t1 9008

.o = BB, ,[tan’d + (1 + 2@, )*]"?

8y 5= AkHBE” [tan®d + (1 + R, )*]"?
k
B,
“h-1 2A, cos d (14)

It has already been shown that the A; and B, coefficients are fairly constant
over two hundred aminocarboxylato chelates. From eqns. (14), it is evident
that the coefficients ¢,,; and c,,; have to be constant as well. In order to
1llustrate this requirement, the coefficients for rings covering a whole range
of conformations were calculated and are presented in Table 2. In addition,
the coeflicients calculated from A; and B;, which themselves have been
obtained by regression analysis of the torsional angles, or from the mean
bond lengths and valence angles, are presented. As can be seen, the coeffi-

cients are fairly constant; some deviation is observed for the extremely
puckered ring.

REPRODUCTION OF TORSIONAL ANGLES

A classical test of the validity of the pseudorotational coefficients is the
reproduction of the torsional angles by the pseudorotational formula (eqn.
(1)). Our claim is that the coefficients ¢, ,; and ¢, ., calculated from the A
and B; coeflicients, which themselves are derived from the bond distances
and valence angles of individual rings, could well be applied to all ring
conformations. |

However, the pseudorotational coefficients taken from one ring do not
allow an exact reproduction of all the torsional angles in another ring.
Therefore, the average values of the pseudorotational coordinates should
be calculated in order to reproduce the torsional angles with equal
accuracy. For that purpose the average phase angle is obtained as

— Wpp, 0N
Wy, = %(wkzkﬂ T Wyjpyo T Wpp_g + wk/k—l) i LR ( 1) * 90°
. 'wk/kJrl‘ (2%

Ck/ckﬂ - _‘;bkﬂ:l

Sin(e,,; + 0) ¢,

(15)

wk,k+i = aI'Ctan |:COt(8k—|—z -1 (5)
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Fig. 4. Favored conformations of aminocarboxylato chelate rings in (A) cobalt(III) complexes
could be explained by n-delocalization along (B) Co-O-C-O bonds.

and the average puckering amplitude as

B 1/2

Y ]
5 . l Ck+i (16)
" ) cos®(wy, + &.,; + 0)

The torsional angles are then reproduced by the pseudorotational formula
Grii = Cpy i Dy cos(w, + &, + 10) (17)

For the considered set of aminocarboxylato chelate rings, the torsional
angles were reproduced using the coefficients given in Table 2. Very good
reproduction of the torsional angles was generally achieved (the standard
deviation was approximately 0.4°, see Table 2). Especially important is the
fact that the coefficients derived from one ring were appropriate for all
of the 200 rings. Hence, we may conclude that our direct method of calcula-
tion of the pseudorotational parameters 1s relatively accurate.

AMINOCARBOXYLATO CHELATE RING CONFORMATIONS IN COBALT(III)
COMPLEXES

The 1nvestigation of the conformations of aminocarboxylato chelate
rings 1n cobalt(Ill) complexes has been our long-term interest [10]. It is
generally believed that five-membered aminocarboxylato chelate rings do
not possess favored conformations, i.e. conformational energy minima [11].
The classification of a small number of aminocarboxylato chelate ring
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conformations in terms of the pseudorotational parameters [6] did not
contradict this belief.

The scattergram (Fig. 3) of the aminocarboxylato chelate ring pseudo-
rotational coordinates is very interesting in that it shows that this ring
does possess favored conformations. The phase angle of pseudorotation (w;, )
1s heavily centered around two values, — 54° and 126°. About 40% of the
examined rings have a pseudorotational phase of 126 + 20°, which corre-
sponds to the d-envelope conformation having the torsional angle around
the O-C bond which i1s close to zero (see Fig. 4A). About 40% of the
examined rings have a pseudorotational phase of —54 + 20°, which corre-
sponds to the 4-envelope conformation having the torsional angle around
the O—C bond which is also close to zero. For C, -substituted aminocar-
boxylato chelate rings and for glycinato chelate rings, the pseudorotation-
al phases are found almost exclusively in the above specified regions. This
strong preference of the aminocarboxylato chelate ring conformations for
a Co—O-C—-C torsional angle close to zero was not clearly observed in the
previous pseudorotational classification of a much smaller number of
aminocarboxylato chelates [6]. However, such behavior could well be a
consequence of m-delocalization of electrons along the Co-O-C-O bonds
(F1g. 4B). This delocalization has been considered important in connection

with the trans influence of an aminocarboxylato chelate carboxylato group
on the shortening of the Co-NO, bond [12].
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APPENDIX A: SINES. RULE FOR A PENTAGON

T'o the four planes containing the valence angles 6, _;,0,,0;,.,and 6, ,,, the

corresponding perpendicular planes containing the torsional angles ¢;_,,
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¢; and — ¢, , are raised (Fig. Al). These three planes are constructed so
that they possess a common point A, in which the bonds d;,, and d;_, are
joined. From the planes containing the valence angles 6, and 6,,,, the
vertical lines A, ,, and A, _,, respectively, are raised to the point A, so that
three rectangular triangles containing the torsional angles —¢;_,, — ¢,
and ¢, ,, are formed. For these triangles, the following trigonometric rela-
tionships hold:

hj+1 — j+2Sin(9j+2) * s1n( — ‘;ijrl)
h;_; =d;_ysin(6;_,) - sin(¢;_,) (A1)

J

where

l o dj+1 o j+2cos(9j+2)sin(9j+1 L O()

cos(a)
a;,,si(b; ) cos(®; ;1)

dj,, — dj ,c08(0;,,)

1go = (A2)

Fig. Al. Geometry of an irregular, puckered pentagon. Four planes, containing valence
angles 6, _,,0,,0,.,,0,,,, and corresponding perpendicular planes containing torsional angles
®i_1, ¢;, — @; ., are drawn. Trigonometry on which calculations are based is presented in two
projections.
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Fig. Bl. Geometry of an irregular, puckered pentagon. Diagonal line is projected on to the
plane containing valence angle 0, ,, and two triangles are formed, ABB’ and AB’C.

From the two perpendicular rectangular triangles (shaded triangles 1n
Fig. Al), the general relationship follows:

h; 1 = (hj,1 — h;)cos(¢;) (A3)

which 1n combination with egn. (Al) gives directly the relationship
between the sines of the torsional angles stated in eqn. (3).

APPENDIX B: COSINE RULE FOR THE TORSIONAL ANGLES IN A PENTAGON

In a pentagon, a diagonal line [, _, 1s constructed so as to close a triangle
containing the valence angle 0, _, and the bonds d; ,, and d; , (F1g. B1). The
cosine rule for this triangle gives

I ,=d},+d? s —2d;, ,d;_5cosl;_, (B1)

3

The pentagon 1s then projected on to the plane containing the valence

angle 0, ,,. Between the diagonal line /;_, and 1ts projection, the following
relation 1s established (triangle ABB’):

I y=h*+ 12, (B2)
Now, A may be calculated from the triangle containing the torsional angle
fibj:

h =d;_,sin0;sin ¢, (B3)
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while /;_, may be calculated from the triangle AB’C constructed on the
projected pentagon:

l,=(d;,—d;,,cos 0;,, —d;_,cos0.)*+ (d; ,sinb, | — d;_,sin0,cos ¢;)’
(B4)

By eliminating /; _,, [/ ,, and h from eqns. (B1)-(B4), one obtains the expres-
sion for cos ¢; given 1n eqn. (5b). That expression may also be put in the form

2 2 72 32
; . .
2d; ,d; ;s1inf.sinb,

Zrz — dr2 dr2+1 o 2drdr+1cos Gr r :J:J T 1:] — .2 (B5)

- cot b cotl,
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