

Advancing Knowledge on Microbes

CONGRESS COMMITTEES

CONGRESS ORGANIZING BOARD

Jacques Schrenzel, *Switzerland*, *Chairperson* Roland Koerner, *UK* Jean-Claude Piffaretti, *Switzerland* Karl-Heinz Schleifer, *Germany*

PROGRAM COMMITTEE

Jean-Claude Piffaretti, *Switzerland*, **Chairperson** Esteban Domingo, *Spain* Dieter Haas, *Switzerland* Urs Jenal, *Switzerland* Patrick Linder, *Switzerland* Didier Mazel, *France* Bernhard Schink, *Germany* Karl-Heinz Schleifer, *Germany* Jacques Schrenzel, *Switzerland*

GRANTS COMMITTEE

Vaso Taleski, *Macedonia - FEMS Grants Secretary, Chairperson* Jaroslav Spizek, *Czech Republic* Helge Holo, *Norway*

08:00-	18:00 Poster Are
POST	ER SESSION 3: ENVIRONMENTAL MICROBIOLOGY (contd.)
Poster	No
122	SELECTION OF BIOINDICATORS FOR LEAD POLLUTION IN MICROBIAL MATS USING HIGH-RESOLUTION MICROSCOPIC TECHNIQUES J. Maldonado, A. Solé, I. Esteve, <i>Spain</i>
123	A STUDY ON FUMARATE REDUCTASE ACTIVITY OF MICROORGANISMS ISOLATED FROM KOREAN BLACK GOAT L.L. Mamuad, M.J. Alam, S.H. Kim, K.K. Cho, C.O. Jeon, S.S. Lee, <i>Republic of Korea</i>
124	DETECTION OF VIRULENCE FACTORS OF AEROMONAS HYDROPHILA ISOLATED FROM TREATED WASTEWATER AND TREATED SLUDGE D.E. Oliveira, L.C. Balsalobre, M. Dropa, E.M. Hachich, M.I.Z. Sato, G.R. Matté, M.H. Matté, <i>Brazil</i>
125	IDENTIFICATION OF NEW ENZYMATIC ACTIVITIES FROM GRAM-POSITIVE BACTERIA ISOLATED FROM TERMITE GUT (<i>RETICULITERMES SANTONENSIS</i>) C. Mattéotti, P. Thonart, F. Francis, E. Haubruge, J. Destain, C. Brasseur, J. Bauwens E. De Pauw, D. Portetelle, M. Vandenbol, <i>Belgium</i>
126	DETECTION OF ENVIRONMENTAL MYCOBACTERIA IN WATER BY REAL TIME QUANTITATIVE PCR G. Meheut, S. Lamart, S. Billard, K. Delabre, N. Charni Ben Tabassi, <i>France</i>
127	A BACTERIAL REPORTERS PANEL FOR THE DETECTION OF ANTIBIOTICS S. Melamed, C. Lalush, S. Yagur-Kroll, T. Elad, N. Kessler, R. Pedahzur, S. Belkin, Israel
128	SCREENING FOR ANTIVIRAL ACTIVITY OF MARINE ACTINOMYCETES COLLECTED ON THE NORTH COAST OF SÃO PAULO STATE, BRAZIL C.B.A. Menezes, C.K. Mantovani, G.K. Kimura, L.K. Kohn, C.W. Arns, F. Fantinatti-Garboggini, <i>Brazil</i>
129	BIOLOGICAL COBALT REMOVAL FROM WASTEWATER OF D.M.T. COMPANY, ISFAHAN S.M. Meybodi, F. Amiri, J. Nekoui, A. Nasrollahi, <i>Iran</i>
130	DEFINING CONSORTIUM OF HYDROCARBON-DEGRADING BACTERIA AND DETERMINATION OF THEIR BIODEGRADATION POTENTIAL J. Milic, G. Gojgic-Cvijovic, V. Beskoski, M. Ilic, T. Narancic, B. Vasiljevic, M.M. Vrvic, Serbia
131	DYNAMICS OF CYPRINID HERPESVIRUS-3 IN NATURAL ENVIRONMENTS IN JAPAN T. Minamoto, M.N. Honjo, Z. Kawabata, <i>Japan</i>
	191

DEFINING CONSORTIUM OF HYDROCARBON-DEGRADING BACTERIA AND DETERMINATION OF THEIR BIODEGRADATION POTENTIAL

J. Milic¹, G. Gojgic-Cvijovic¹, V. Beskoski¹, M. Ilic¹, T. Narancic², B. Vasiljevic², M.M. Vrvic³

¹Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, ²Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, ³Faculty of Chemistry, University of Belgrade, Belgrade, Serbia

Background: Oil contaminated soil is a widespread problem that often requires clean-up of the contaminated site. It has been suggested that the addition of hydrocarbon-degrading microbes to polluted site is less effective in hydrocarbons removal than stimulating the growth of the indigenious microorganisms with potential in biodegradation.

Objectives: The aim of this study was to examine biodegradation potential of four hydrocarbondegrading bacteria both individually and as consortium, primarily on PAHs and BTEX.

Methods: Bacteria were isolated from Oil rafinery Pancevo (Serbia) and identified based on 16S RNA sequences.Cell respiration was determined by measuring dehydrogenase activity. Biofilm formation was investigated in stationary conditions [1].Biodegradation potential of isolated bacteria individually and in consortium was tested by degradation of PAH (phenantrene, pyrene, dibenzothiophene) and BTEX, at 28°C and rotation of 120 rpm for one month. Criteria for microbial growth.were weakly measurements of optical density (620 nm)

Conslusions: Isolated bacteria were identified as *Rhodococcus spp*, *Staphylococcus pasteuri*, *Planomicrobium sp* and *Micrococcus sp*, based on 16S RNA sequence.Results showed that *Rhodococcus spp* is the most efficient in degradation of all hydrocarbons used, while *Planomicrobium sp* is slowest hydrocarbon-degrader. However, this bacterium has strong ability for biofilm formation, and probably plays an important role in the consortium, in terms of the substrate initial degradation, thus making it more available to other constituents of the consortium.Experiments with defined consortium showed that community is more efficient in later stages of hydrocarbon degradation.

References:

[1] H. Mehdi, E. Giti, Int. Biodeter. Biodegr. Vol. 62 (2008) 170.

DEFINING CONSORTIUM OF HYDROCARBON-DEGRADING BACTERIA AND DETERMINATION OF THEIR BIODEGRADATION POTENTIAL

J. Milic^{1*}, G. Gojgic Cvijovic¹, V. Beskoski¹, M. Ilic¹, T. Narancic², B. Vasiljevic², M. M. Vrvic^{1,3} ³Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, P.O. Box 473, Serbia ³Insitute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O. Box 23, Serbia ³Faculty of Chemistry, University of Belgrade, Serbia *jelena_milic@yahoo.com

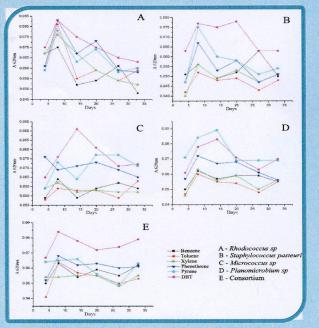
BACKROUND

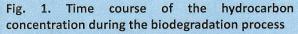
Oil contaminated soil is a widespread problem that often requires clean-up of the contaminated site. It has been suggested that the addition of hydrocarbon-degrading microbes to polluted site is less effective in hydrocarbons removal than stimulating the growth of the indigenious microorganisms with potential in biodegradation.

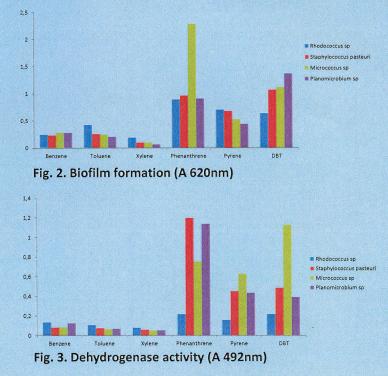
The aim of this study was to examine biodegradation potential of four hydrocarbon-degrading bacteria both individually and as consortium primarily on PAHs and BTEX.

METHODS

Bacteria were isolated from Oil rafinery Pancevo (Serbia) and identified based on 16S RNA sequences.


Cell respiration was determined by measuring dehydrogenase activity. Biofilm formation was investigated in stationary conditions [1].


Biodegradation potential of isolated bacteria individually and in consortium was tested by degradation of PAH (phenantrene, pyrene, dibenzothiophene) and BTEX, at 28°C and rotation of 120 rpm for one month. Criteria for microbial growth were weakly measurements of optical density (620 nm).


RESULTS

Isolated bacteria were identified as *Rhodococcus sp., Staphylococcus pasteuri, Planomicrobium sp.* and *Micrococcus sp.,* based on 16S RNA sequence.

Results showed that all bacteria has higher affinity to degrade PAH than BTEX. *Rhodococcus sp.* is the most efficient in degradation of all hydrocarbons used, while *Micrococcus sp.* is slowest hydrocarbon-degrader (Fig. 1.). However, *Micrococcus sp.* has strong ability for biofilm formation, and probably plays an important role in the consortium, in terms of the substrate initial degradation, thus making it more available to other constituents of the consortium (Fig. 2.). *Staphylococcus pasteuri* and *Planomicrobium sp.* have highest dehydrogenase activity, indicating these bacteria as important parts of microbial consortium. (Fig. 3)

CONCLUSIONS

Experiments with defined consortium showed that community is more efficient in later stages of hydrocarbon degradation.

REFERENCE

[1] H. Mehdi, E. Giti, Int. Biodeter. Biodegr. Vol. 62 (2008) 170.