

MICROBIOLOGIA BALKANICA 2011 7th BALKAN CONGRESS OF MICROBIOLOGY 8th CONGRESS OF SERBIAN MICROBIOLOGISTS

PROCEEDINGS

October 25-29, 2011 Continental Hotel, Belgrade, SERBIA CIP – Katalogizacija u publikaciji Narodna biblioteka Srbije, Beograd

Udruženje mikrobiologa Srbije, Beograd. Knjiga radova (Elektronski izvor) – Proceedings / MICROBIOLOGIA BALKANICA 2011 - 7th BALKAN CONGRESS OF MICROBIOLOGY & 8th CONGRESS OF SERBIAN MICROBIOLOGISTS, 25-29. oktobar 2011; (organizator) Udruženje mikrobiologa Srbije, Udruženje medicinskih mikrobiolga Srbije; (urednici: Dragojlo Obradović, Lazar Ranin, Špiro Radulović) – Beograd 1 elektronski optički disk (CD-ROM); 12cm

Sistemski zahtevi: Nisu navedeni. Nasl. sa naslovnog ekrana. – Radovi na engleskom jeziku.-Tekst latinica. – Tiraž – 600. Abstracts. – Registar

ISBN 978-86-914897-0-01 Udruženje mikrobiologa Srbije, Beograd.

KNJIGA RADOVA / PROCEEDINGS

MICROBIOLOGIA BALKANICA 2011 - 7th BALKAN CONGRESS OF MICROBIOLOGY & 8th CONGRESS OF SERBIAN MICROBIOLOGISTS, 25-29. oktobar 2011

Izdaje / Published by:

Udruženje mikrobiologa Srbije Nemanjina 6, 11 080 Beograd, Srbija, tel/fax: 011 2199 711, <u>dobradovic@agrifaculty.bg.ac.rs</u>

Za izdavača / For Publisher:

Dragojlo Obradović, predsednik Udruženja

Urednici/Editors:

Dragojlo Obradović Lazar Ranin Špiro Radulović

ISBN 978-86-914897-0-01

Kompjuterska obrada teksta / Computer Layout: Jelena Zovko Belić

Tiraž / Circulation 600 primeraka / 600 copy

Umnožavanje / Copying Megaphone d.o.o., Vladimira Rolovića 105, Beograd, Srbija

Exopolysaccharides from *Bacillus licheniformis*: Production, partial characterization and emulsifying activity

J. R. Stefanović, D. D. Ilić, D. M. Jakovljević, G. Đ. Gojgić-Cvijović, M. M. Vrvić

Introduction

Microbial exopolysaccharides (EPSs) are soluble or insoluble polymers secreted by microorganisms. Due to their characteristic physical and rheological properties, EPSs are videly used in the food industry (as emulsifying, viscosifying, stabilizing or gelling agents), as well as bioflocculants, bioabsorbents, heavy metal removal agents, drug delivery agents, and others. Their antitumor, antiviral, immunostimulatory and anti-inflammatory activities are also proved. *Bacillus* spp. produce a variety of EPSs. Some of them have excellent properties, which makes them interesting for investigation of the potential use.

Aim

The aim of the present study was to compare growth and EPS production of *Bacillus licheniformis* in two different media, and to partially characterize isolated polysaccharides.

Material and methods

Strain of *Bacillus licheniformis* NS032 used in this experiment was isolated from petroleum sludge sample taken from Oil Refinery, Novi Sad. Fermentations were conducted in nutrient and sucrose broths. EPSs were isolated from media by centrifugation on 10000 rpm and precipitation with three volumes of ethanol. Monosaccharide composition was determined by paper chromatography, after total hydrolysis using 2 M trifluoroacetic acid. Emulsifying activity was determined as E_{24} .

Results

Obtained results showed that *Bacillus licheniformis* strain grows much better on nutrient medium than on sucrose medium. Growth maximum was attained at the third day of fermentation. In sucrose broth, EPS production reached 7 g/L, and this level was two fold higher than that obtained in nutrient broth. Crude polysaccharide preparations were built from fructose and glucose (EPS obtained from sucrose medium) or galactose, glucose and fructose monosaccharide units (EPS from sucrose medium) and exhibit high emulsifying activity compared with chemical surfactant.

Conclusion

Based on obtained results, it can be concluded that better medium for growth of *Bacillus licheniformis* strain is nutrient broth, while high concentrations of EPSs were achieved in sucrose broth. Significant emulsifying activity is the basis for further characterization of structure and makes them very useful in industrial and environmental applications.

Key words

Microbial growth, exopolysaccharides, emulsifying activity

Exopolysaccharides from Bacillus licheniformis: Production, partial characterization and emulsifying activity

Jovana R. Stefanović, Dragana D. Ilić*, Dragica M. Jakovljević, Gordana Đ. Gojgić-Cvijović, Miroslav M. Vrvić*

IChTM, Department of Chemistry, University of Belgrade, Njegoševa 12, P. O. Box 473, 11000 Belgrade, Serbia, *Faculty of Chemistry, University of Belgrade, Studentski trg 16, P. O. Box 51, 11158 Belgrade, Serbia

Microbial exopolysaccharides (EPSs) are soluble or insoluble polymers secreted by microorganisms. The use of such molecules is widespread due to their unique or superior physical properties relative to traditional plant polysaccharides. In this category are xantan, pullulan, fructan, dextran, etc. Fructans are a diverse group of polysaccharides that contain one or more β-linked fructose units. In the most prominent structural types, inulin and levan, polysaccharide chain originates from the fructose part of a sucrose molecule, proceeding via β -(2,1) and β -(2,6) linkages, respectively. Bacillus, Aerobacter, Streptococcus, Pseudomonas, Corynebacterium are just some of EPS producing genera.

The aim of the present study was to compare growth and EPS production of Bacillus licheniformis in two different media, and to partially characterize isolated polysaccharides.

Strain of Bacillus licheniformis NS032 used in this experiment was isolated from petroleum sludge sample taken from Oil Refinery, Novi Sad.1 The identification of isolated strains was achieved by API tests (Tables 1 and 2, Figure 1), fatty acid methyl ester (FAME) composition (Table 3) and by sequence analysis of 16S rRNA genes (Figure 2). The strain grows on the majority of the selected hydrocarbons as the sole source of carbon, and show tolerance to the heavy metals: Ni2+ (5 mmol I-1), Cu2+ (2.5 mmol I-1), Cr2+ (2.5 mmol I-1) and Cd2+ (1.25 mmol I-¹), which indicates a broad capacity for the degradation and ability to survive.

For EPS production, fermentations were conducted in nutrient (NB) and sucrose broths (SB).² EPSs were isolated from media by centrifugation on 10000 rpm and precipitation with three volumes of ethanol. Monosaccharide composition was determined by paper chromatography, after total hydrolysis using 2 M trifluoroacetic acid. Emulsifying activity was determined as E₂₄.³

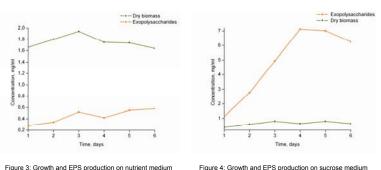


Figure 3: Growth and EPS production on nutrient medium

Table 4: Emulsifying activity

Sample	Upper layer height, mm	Inner layer height, mm	Lower layer height, mm	E ₂₄ , %
Water	11	-	12	-
1% Biosolve	9	6	13	27.27
1% EPS-NB	7	5	15	22.73
1% EPS-SB	9	3	11	15.00

CHEMISTRY

2011

1. G. D. Gojgic-Cvijovic et al., Biodegradation, DOI 10.1007/s10532-011-9481-1 2. C. Liu et al., Biores. Technol. 101 (2010) 5528

3. Bento et al., Microbial Res. 160 (2005) 249

Table 1: Growth of Bacillus licheniformis NS032 on different carbon sources (API 50CH)

Tube	Test	Growth												
0	0		10	GAL	yes	20	MDM	no	30	MEL	yes	40	TUR	yes
1	GLY	yes	11	GLU	yes	21	MDG	yes	31	SAC	yes	41	LYX	no
2	ERY	no	12	FRU	yes	22	NAG	yes	32	TRE	yes	42	TAG	yes
3	DARA	no	13	MNE	yes	23	AMY	yes	33	INU	yes	43	DFUC	no
4	LARA	yes	14	SBE	no	24	ARB	yes	34	MLZ	no	44	LFUC	no
5	RIB	yes	15	RHA	yes	25	ESC	yes	35	RAF	yes	45	DARL	no
6	DXYL	yes	16	DUL	no	26	SAL	yes	36	AMD	yes	46	LARL	no
7	LXYL	no	17	INO	yes	27	CEL	yes	37	GLYG	yes	47	GNT	no
8	ADO	no	18	MAN	yes	28	MAL	yes	38	XLT	no	48	2KG	no
9	MDX	no	19	SOR	yes	29	LAC	no	39	GEN	yes	49	5KG	no

Figure 1: Photograph of API 50CH test

Table 3

Figure 2: Phylogenetic tree obtained by the neighbor - joining method

Table 2: API 20E/50CHB test Tube Test Reaction 50 ONPG ves ADH 51 yes 52 LDC no 53 ODC no 54 CIT no 55 H2S no 56 URE no 57 TDA no 58 IND no 59 VP ves 60 GEL

yes

61 NIT

3: Cellular fatty aci	d composition of isolated	strain,	% of total detected	

Fatty acid ^a	NS032	Fatty acid ^a	NS032	Fatty acid ^a	NS032
<i>i</i> 12:0	ND ^b	14:0	0.29	<i>i</i> 17:0	15.32
12:0	ND	<i>i</i> 15:0	29.37	a17:0	ND
12 2OH	ND	a15:0	33.63	17:0	ND
12 3OH	ND	15:0	ND	Σ18:1°	ND
<i>i</i> 13:0	ND	<i>i</i> 16:0	3.18	18:0	0.58
a13:0	ND	Σ16:1°	ND	18:0 10 methyl	ND
13:0	ND	16:0	9.49	<i>cy</i> 19:0	ND
<i>i</i> 14:0	ND	<i>cy</i> 17:0	ND		

a Fatty acids are designated in terms of the total number of carbon atoms ¹ raty actus are designated in terms of the total number of carbon admission number of double bonds. The prefixes a and *i* indicate anties and iso branching, cy refers to cyclopropane fatty acids, OH indicates the presence of hydroxyl group.
Not determined, values < 0.20 % are ommitted.</p>

Not determined, values < 0.20 % are ommited. Total sum of monounsaturated acids.

Obtained data (Figures 3, 4) showed that Bacillus licheniformis strain grew much better on nutrient medium than on sucrose medium. Growth maximum was attained at the third day of fermentation. In sucrose broth, EPS production reached 7 g/L, and this level was two fold higher than that obtained in nutrient broth. Crude polysaccharide preparations were built from fructose and glucose (EPS obtained from sucrose medium) or galactose, glucose and fructose monosaccharide units (EPS from nutrient medium) and exhibited high emulsifying activity compared with chemical surfactant (Table 4). EPS from sucrose medium were purified by repeated dissolution and precipitation with iso-propanol and, based on the results of acid hydrolysis, it was shown that investigated polysaccharide was fructan.