The venue is:

CITY CENTRE

with numerous shopping possibilities. Nearly all shops of them are open from 9.30 to 20.00.

LOCAL ORGANISING COMMITTEE

Claudia Birkner | German Chemical Society (GDCh), Frankfurt/Main, Germany
Wolfgang Buscher | University of Münster, Münster, Germany
Christiane Dörr | German Chemical Society (GDCh), Frankfurt/Main, Germany
Carsten Engelhard | University of Münster, Münster, Germany
Helene Faber | University of Münster, Münster, Germany
Claudia Jostmeier | Münster Marketing, Münster, Germany
Uwe Karst | University of Münster, Münster, Germany
Marianne Lüttmann | University of Münster, Münster, Germany
Michael Sperling | University of Münster, Münster, Germany
Martin Vogel | University of Münster, Münster, Germany

SCIENTIFIC COMMITTEE

Maria Montes-Bayón | University of Oviedo, Oviedo, Spain
Joseph A. Caruso | University of Cincinnati, Cincinnati/OH, USA
Shuichi Enomoto | Okayama University, Okayama & RIKEN Center for Molecular Imaging Science, Kobe, Japan
Jörg Feldmann | University of Aberdeen, Aberdeen, United Kingdom
Gary M. Hiettje | Indiana University, Bloomington/IN, USA
Uwe Karst | University of Münster, Münster, Germany (Chair)
Bernhard K. Keppler | University of Vienna, Vienna, Austria
Claudia Lanvers-Kaminsky | University Hospital, Münster, Germany
X. Chris Le | University of Alberta, Alberta/Edmonton, Canada
Ryszard Lobinski | National Center for Scientific Research (CNRS), Pau, France
Jens Müller | University of Münster, Münster, Germany
Michael Schäfers | European Institute for Molecular Imaging (EIMI) & University of Münster, Münster, Germany
Tanja Schwerdtle | University of Münster, Münster, Germany
Michael Sperling | European Virtual Institute for Speciation Analysis (EVIISA) & University of Münster, Münster, Germany (Co-Chair)
Myroslav Stýblo | University of North Carolina, Chapel Hill/NC, USA
Synthesis of Stable Silver Nanoparticles Using Aqueous Solutions of Pullulan and its Polyaldehydes

Tools for Metallomics 1

The Application of Microwave Digestion for Improved Efficacy of Metalloprotein Identification
Afton, S., Research Triangle Park/USA, Van Sant, C., Research Triangle Park/USA, Cargile, B. J., Research Triangle Park/USA, Burger, M. K., Research Triangle Park/USA, Essader, A. S., Research Triangle Park/USA, Levine, K. E., Research Triangle Park/USA, Grohse, P. M., Research Triangle Park/USA

Electrospray Ionization Mass Spectrometry (ESI-MS) of Benzoylthioure (BTU) Complexes of Palladium and Platinum
Aggarwal, S. K., Mumbai/IND, Kumar, P., Mumbai/IND, Jaison, P. G., Mumbai/IND, Telmore, V. M., Mumbai/IND

Identification and Quantification of Selenoproteins in Human Serum and Plasma Standard Reference Materials
Ballhaut, G., Charleston/USA, Davis, W. C., Charleston/USA, Kilpatrick, L. E., Gaithersburg/USA

Speciation of Biologically Important Metal Chelate Systems Using Hyphenated Techniques: CE-MS Study of the Distribution of Ni (II)-Histidine in Solution
Barrett, U. M., Cork/IRL, Crean, C., Cork/IRL, Glennon, J. D., Cork/IRL

ToF-SIMS and Laser-SNMS Analysis of Macrophages after Uptake of Silver Nanoparticles

Monitoring the Synthesis of Metal Glycinates by LC-ESI-MS
Ferreira, O., Budapest/H, Németh, A., Budapest/H, Demnovics, M., Budapest/H

Exploration of Target Molecules for Molecular Imaging of Ulcerative Colitis

Micro-XRF Imaging and X-ray Absorption Fine Structure Analysis Utilizing High-energy Synchrotron Radiation to Investigate the Accumulation Mechanism of Cd in Plants
Synthesis of stable silver nanoparticles using aqueous solutions of pullulan and its polyaldehydes

Pullulan is one of the extracellular polysaccharides produced by the "black yeast" Aureobasidium pullulans that is widely spread in different ecological sites, including forest, soil and peat [1]. Pullulan is a linear α-D-glucan which structure consists of a series of maltotriose units connected by α-D-(1→6) glycosidic bonds. However, some of the maltotriosyl residues are replaced by higher oligosaccharide units, most frequently with maltotetraosyl units [2]. In the earlier work we reported structure of the pullulan produced by Aureobasidium pullulans, strain CH-1 [3].

Silver nanoparticles have been synthesized by using linear polysaccharide pullulan and its polyaldehyde that served to cross-link the individual polymeric chains of this polysaccharide. Obtained solutions of polymers were used as both the reducing and stabilizing agents. Reactions were carried out in two different conditions: in the microwave and in the autoclave. Nanoparticles thus prepared are found to be stable in aqueous solution over a period of one month at room temperature, without any aggregation of the particles. UV-Vis spectra of the investigated solutions showed a characteristic absorption peak at 424 nm.

The morphology of the samples was analyzed using scanning electron microscopy (SEM), which showed polydispersity of the particle size.

Antimicrobial activity testing was carried out at agar plates with different concentrations of the investigated solutions, against various strains of bacteria and fungi. Results showed that the microbial growth was gradually reduced as the concentration of the silver increased.

Application of pullulan and its derivatives in nanochemistry extends the application of this polysaccharide, which is already widely present in various fields, such as medicine, biotechnology, food, pharmaceutical, cosmetic and many other industries [4].

References:
SYNTHESIS OF STABLE SILVER NANOPARTICLES USING AQUEOUS SOLUTIONS OF PULLULAN AND ITS POLYALDEHYDES

1) ChTM - Department of Chemistry, University of Belgrade, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia
(jovana_stefanovic@chem.bg.ac.rs)
2) Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11150 Belgrade, Serbia

Pullulan is one of the extracellular polysaccharides produced by the “black yeast” Aureobasidium pullulans that is widely spread in different ecological sites, including forest, soil and peat [1]. Pullulan is a linear α-D-glucan which structure consists of a series of maltotriose units connected by α-D-(1→6) glycosidic bonds. However, some of the maltotriosyl residues are replaced by higher oligosaccharide units, most frequently with maltotriosaol units [2]. In the earlier work we reported structure of the pullulan produced by Aureobasidium pullulans, strain CH-1 [3].

Silver nanoparticles have been synthesized using pullulan and its polyaldehydes that served to cross-link the individual polymeric chains of this polysaccharide and 100 mM AgNO₃. Obtained solutions of polymers were used as both the reducing and stabilizing agents. Reactions were carried out in two different conditions: in the microwave and in the autoclave. Nanoparticles thus prepared are found to be stable in aqueous solution over a period of one month at room temperature, without any aggregation of the particles (Figure 1). UV-Vis spectra of the investigated solutions showed a characteristic absorption peak at 424 nm (Figure 2).

The morphology of the samples was analyzed using scanning electron microscopy (SEM), which showed polydispersity of the particle size (Figures 3, 4).

Antimicrobial activity testing was carried out at agar plates with different concentrations of the investigated solutions, against various strains of bacteria and fungi. Results showed that the microbial growth was gradually reduced as the concentration of the silver increased. Figure 5 represents some experiments against Micrococcus lysodeikticus ATCC 4698.

Application of pullulan and its derivatives in nanochemistry extends the use of this polysaccharide, which is already widely present in various fields, such as medicine, biotechnology, food, pharmaceutical, cosmetic and many other industries [4].

REFERENCES:

ACKNOWLEDGEMENT: This work was supported by the Ministry of Science and Technological Development, Republic of Serbia, Project No. III 43004.