MICROBIOLOGIA BALKANICA 2011

7th BALKAN CONGRESS OF MICROBIOLOGY
8th CONGRESS OF SERBIAN MICROBIOLOGISTS

Serbian Society for Medical Microbiology
Serbian Society for Microbiology
Faculty of Biology, University of Belgrade

October 25-29, 2011
Continental Hotel, Belgrade, SERBIA
Committees

Organizing Committee
President: Prof. dr Spiro Radulovic
Vice president: Prof. dr Dragojo Obradovic
General Secretary: Prof. dr Lazar Ranin

Members:
Prof. dr Branislava Kocic
Prof. dr Branislava Savic
Prof. dr Ruzica Asanin
Prof. dr Veljko Mirovic
Prof. dr Vaso Taleks
Prof. dr Djordje Fira
Prof. dr Slavisa Stankovic

Scientific Committee
President: Prof. dr Tanja Jovanovic

Members:
Prof. dr Ruzica Asanin
Prof. dr Dejan Baskic
Prof. dr Sava Buncic
Prof. dr Angel Galabov
Prof. dr Zeynep Guley
Dr Dobrila Jakic Dimic
Prof. dr Dragulin Djukic
Prof. dr Mirjana Jarak
Prof. dr Vera Katic
Prof. dr Jelena Knezevic Vukcevic
Prof. dr Dejan Krnajic
Prof. dr Marija Kustuzov
Prof. dr Zoran Kulicic
Prof. dr Nada Kujic Kapulica
Prof. dr Dusan Latesovic
Prof. dr Stojan Matijovic
Prof. dr Sanja Miletic
Dr Jasmina Nedeljkovic
Prof. dr Viktor Nedovic
Prof. dr Marijan Negut
Prof. dr Miomir Niksic
Prof. dr Aleksa Obradovic
Prof. dr Anna Papa
Prof. dr Milena Petrovska
Prof. dr Olga Petrovic
Dr Milanko Sekler
Prof. dr Marija Skrinjar
Prof. dr Vaso Taleksi
Prof. dr Ljubica Topisirovic
Dr Branka Vasiljevic
Dr Branka Vidic
Prof. dr Jelena Vukojevic
Prof. dr Miroslav Vrivc
Dr Milan Koci
Prof. dr Sinisa Markov
Prof. dr Vera Radevic

Board of the Balkan Society for Microbiology

President:
Prof. dr Milena Petrovska (Skopje)

President – elect:
Prof. dr Spiro Radulovic (Belgrade)

Members:

Bulgaria:
Prof. dr Angel GALABOV (Sofia)
Prof. dr Todor KANTAROJIEV (Sofia)
Prof. dr Hristo NOJDENSKI (Sofia)

Greece:
Prof. dr Athanassios TSAKRIS (Athens)
Prof. dr Anna PAPA KONIDARI (Thessaloniki)

Macedonia:
Prof. dr Dzoko KUNGULOVSKI (Skopje)
Prof. dr Nikola PANOVSKI (Skopje)

Montenegro:
Dr Jelena ZINDOVIC (Podgorica)
Dr Zoran VRATNICA (Podgorica)
Doc. dr Vineta VUKSANOVIC (Podgorica)

Romania:
Prof. dr Gabriel IONESCU (Bucharest)
Prof. dr Marian NEGUT (Bucharest)
Prof. dr Alexandru RAFILA (Bucharest)

Serbia:
Prof. dr Branislava KOCIC (Nis)
Prof. dr Lazar RANIN (Belgrade)

Turkey:
Prof. dr Nezahat GULER (Istanbul)
Prof. dr Zeynep GULAY (Istanbul)

Plenary speakers
Milton da Costa (Portugal)
Otto Hailer (Germany)
Mirsada Hukic (BiH)
Gunnar Kahlmeter (Germany)
Anna Papa – Konidari (Greece)
Elisabeth Nagy (Hungary)
Bernhard Schink (Germany)
Vittorio Venturi (Italy)
EFFECT OF A FOLLOW-ON FORMULA SUPPLEMENTED WITH PREBIOTICS ON THE BABY’S GUT COMPOSITION

N. M. Lugonja¹, O. B. Laugier¹, S. D.Spasic¹, G. Dj. Gojgic-Cvijovic¹, and M.M. Vrvic¹,²

¹Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
²Faculty of Chemistry, University of Belgrade, Serbia

Introduction: The microbial colonization of human intestine begins at birth. Different factors, mainly the type of diet, influence the development of the baby’s gastrointestinal microflora. Human breast milk is the best dietary choice for babies, and considered the gold standard against which the quality of adapted formula milks is assessed.

Aim: The aim of this study was to determine effect of a follow-on formula supplemented with inulin and fructooligosaccharides (FOS) on the gut microbial composition, as well as on the growth and development of babies, and to compare it to that of human breast milk.

Material and methods: Healthy, vaginally, term born babies 6 to 12 months old, were enrolled in a 28-day study. Babies were divided in two groups according to the type of feeding: those receiving supplemented follow-on formula with inulin and FOS, and those receiving breast milk (control group). Fecal samples were obtained before (day 0) and during study at days 14 and 28, and used to determine the counts of Bifidobacterium sp., Lactobacillus sp., total aerobes, anaerobes, and yeasts and fungi. Every day during the study, the weight and length of the babies, number of feeds, tolerance to the offered meal (follow-on formula or breast milk), and stool frequency and consistency were recorded.

Results: Before and after 14 days of formula administration, the number of bifidobacteria and lactobacilli did not differ among the groups. At the end of the 28-day period, the number of bifidobacteria and lactobacilli significantly increased in formula fed versus breast milk fed group. There were no significant differences in fecal numbers of total aerobes, anaerobes, and yeasts and fungi. All babies exhibited normal growth during the study, within the normal framework for that period of life (age between 6-12 months), and liked offered milks. Stool frequency and consistency, and side effects (flatus and regurgitations) did not differ among the feeding groups during the study.

Conclusion: This study showed that follow-on formula supplemented with inulin and FOS stimulates bifidogenic effect in the baby’s intestine during the weaning period. It can be concluded that tested follow-on formula with prebiotics has a similar effect on the baby’s gut microflora, and growth development as mature breast milk.

Key words: inulin, follow-on formula, bifidobacteria, lactobacilli
EFFECT OF A FOLLOW-ON FORMULA SUPPLEMENTED WITH PREBIOTICS ON THE BABY’S GUT COMPOSITION

Introduction:
The microbial colonization of human intestine begins at birth. Different factors, including the type of birth (vaginal or caesarean), the microbiota of the mother’s vagina and skin, hygiene during birth, the newborn’s environment, antibiotic regime and, above all, the type of diet, influence the development of the baby’s gastrointestinal microflora. Human breast milk is the best dietary choice for babies, as it protects babies from allergies, infections and oxidative stress. Breast milk is considered the gold standard against which the quality of adapted formula milks is assessed. Formula feeds, used by women who cannot breastfeed, should satisfy all the nutritional requirements and allow normal development of babies.

Aim:
The aim of this study was to determine effect of a follow-on formula supplemented with inulin and fructoooligosaccharides (FOS) on the gut microbial composition, as well as on the growth and development of babies, and to compare it to that of human breast milk.

Material and methods:
Healthy, vaginally, term born babies 6 to 12 months old, were enrolled in 28-day study. Babies were divided in two groups according to the type of feeding: those receiving supplemented follow-on formula with inulin and FOS (FF), and those receiving breast milk (BMbF, control group). The follow-on formula group received an experimental full-term formula designed for babies 6 to 12 months old, and supplemented with inulin and FOS (4.0 g/l). The inulin and FOS used in this study were produced from natural chicory. Fecal samples were obtained before (0D) and during study at days 14 and 28 (D14, D28), and used to determine the counts of Bifidobacterium sp., Lactobacillus sp., total aerobes, anaerobes, and yeasts and fungi. Every day during the study, the weight and length of the babies, number of feeds, tolerance to the offered meal (follow-on formula or breast milk), and stool frequency and consistency were recorded.

Results:
Modifications in levels of the microbial colonization between the beginning 0D, D14 and the end of the supplementation for both groups are compared in table. The bacterial counts are expressed as means ± SD 10^10 CFU/g feces. Before and after 14 days of formula administration, the number of bifidobacteria and lactobacilli did not differ among the groups. At the end of the 28-day period, the number of bifidobacteria and lactobacilli significantly increased in formula fed versus breast milk fed group. Simultaneously with the increase in bifidobacterial and lactobacilli populations, decreases in the total aerobes, anaerobes and yeasts and fungi levels were observed. During the study, the numbers of total aerobes and yeasts and fungi continually decreased in the stools of the FF infants, without statistically significant differences between the groups at the end of the study. The anaerobes decreased in both groups during the study, with significant differences with time but without significantly different rates of change. All babies exhibited normal growth during the study, within the normal framework for that period of life (age between 6-12 months). In the study, all babies in each group liked the offered milks. The intake of the bottle formula with added inulin and FOS at 4.0 g/l was well tolerated by the infants: the incidence of side effects did not differ among the feeding groups during the study. Stool frequency and consistency, and side effects (flatus and regurgitations) did not differ among the feeding groups during the study.

Conclusion:
This study showed that follow-on formula supplemented with inulin and FOS stimulates bifidogenic effect in the baby’s intestine during the weaning period. It can be concluded that tested follow-on formula with prebiotics has a similar effect on the baby’s gut microflora, and growth development as mature breast milk.

Nikoleta M. Lugonja1
Olga B. Laugier1
Snežana D. Spasić1
Gordana Dj. Gojgić-Cvijović1
Miroslav M. Vrvić1,2

1-Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia
2-Faculty of Chemistry, University of Belgrade, Serbia
nikoleta@chem.bg.ac.rs

<table>
<thead>
<tr>
<th>Levels of Baby’s Gut Colonization in the Follow-on Formula and Breastmilk Fed Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of feeding</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Follow-on formula with added inulin and FOS (FF)</td>
</tr>
<tr>
<td>Bifidobacterium</td>
</tr>
<tr>
<td>0D</td>
</tr>
<tr>
<td>D14</td>
</tr>
<tr>
<td>D28</td>
</tr>
<tr>
<td>Lactobacillus</td>
</tr>
<tr>
<td>0D</td>
</tr>
<tr>
<td>D14</td>
</tr>
<tr>
<td>D28</td>
</tr>
<tr>
<td>Aerobes</td>
</tr>
<tr>
<td>0D</td>
</tr>
<tr>
<td>D14</td>
</tr>
<tr>
<td>D28</td>
</tr>
<tr>
<td>Anaerobes</td>
</tr>
<tr>
<td>0D</td>
</tr>
<tr>
<td>D14</td>
</tr>
<tr>
<td>D28</td>
</tr>
<tr>
<td>Yeasts and Fungi</td>
</tr>
<tr>
<td>0D</td>
</tr>
<tr>
<td>D14</td>
</tr>
<tr>
<td>D28</td>
</tr>
</tbody>
</table>

*The p value represents the significance level of the difference in the change between the groups during the study, determined by the independent-sample t-test.
** F1 and F2 group = given as the internal group factor (within subject factors = F1) and as the factor of differences between the groups between subject factors = F2 group.