PROCEEDINGS

OF THE XI-TH NATIONAL CONFERENCE
WITH INTERNATIONAL PARTICIPATION
OF THE OPEN AND UNDERWATER
MINING OF MINERALS

June 19-23, 2011
International House of Scientists "Fr. J. Curie"
Varna, Bulgaria
By courtesy of

FEDERATION OF THE SCIENTIFIC ENGINEERING UNIONS

with the co-operation of:

- Ministry of Economy, Energy and Tourism in Bulgaria
- Ministry of Environment and Water in Bulgaria
- University of mining and geology “St. Ivan Rilski”
- Bulgarian chamber of mining and geology
- Association “Bulgarian coal mining”
- “Marica Iztok” mines JSC
- “Ellatzite-med” JSC
- “Assarel Medet” JSC
- “Kaolin” JSC
- “Minproekt” JSC
- “Niproruda” JSC
- “Geotechmin” Ltd.
- “Minstroy Holding” JSC
- “Beli breg” mine JSC
- “Stanyantzi” mine JSC
- “Chukurovo” mine JSC
- Open pit Coal Mining – Pernik
- “Bobov dol” mine JSC
- MDZ “Balsha”
- “Devnja varovik” JSC
- “Inertni materiali” JSC
- “Hemus – M” JSC
- “Zlatna Panega Cement” JSC
- “Vatija” JSC
- “Andela” JSC
- “Andezit” Ltd.
- “Minstroy Rodopi” JSC
- “BT engineering” Ltd.
- “SPES international” Ltd.
- “Geostabil” SD
- “Bumar” JSC
- “NOAC” Ltd.
- “Eskana” JSC
ORGANIZING COMMITTEE

Chairman, Scientific and technical union of mining, geology and metallurgy

University of mining and geology “St. Ivan Rilski”

Chairman, Bulgarian chamber of mining and geology
General manager, Maritza Iztok Mines JSC
Rector, University of mining and geology “St. Ivan Rilski”

Vice-chairman, Scientific and technical union of mining, geology and metallurgy
Secretary general, Scientific and technical union of mining, geology and metallurgy

Scientific and technical union of mining, geology and metallurgy

Executive director, “Ellatzite-med” JSC
Chairman, Board of directors, “Minstroy holding” JSC
Executive director, “MINPROEKT” JSC
Executive director, “NIPRORUDA” JSC
Vice – Executive Director, “Kaolin” JSC
Vice-chairman, Scientific and technical union of mining, geology and metallurgy
Vice-chairman, Scientific and technical union of mining, geology and metallurgy
Honorary member of the ISM
“Geotechmin” Ltd
Chairman, Association “Bulgarian coal mining”
Director, “Assarel Medet” JSC
Vice – Director, “Ellatzite-med” JSC
Vice – Executive Director, Maritza-Iztok Mines JSC
Chief engineer, “Andezit” Ltd
Ministry of economy, energy and tourism in Bulgaria
Executive Director, MDZ “Balsha”
Director, Opencast mine “Ellatzite”
University of mining and geology “St. Ivan Rilski”
University of mining and geology “St. Ivan Rilski”
Director, “Geostabil” SD
Manager, “NOAC” Ltd
Executive Director, Open pit Coal mines JSC
“N & N Fluonte” Ltd
Executive Director, “Hemus – M” JSC, Mezdra
University of mining and geology “St. Ivan Rilski”
University of mining and geology “St. Ivan Rilski”
Institute of oceanology, Bulgarian academy of sciences
Director of Department, Ministry of environment and water in Bulgaria
University of mining and geology “St. Ivan Rilski”
University of mining and geology “St. Ivan Rilski”
“Assarel Medet” JSC
University of mining and geology “St. Ivan Rilski”
University of mining and geology “St. Ivan Rilski”
University of mining and geology “St. Ivan Rilski”

Chairman: Dr. Eng. Tzolo Voutov
Honorary Chairman: Prof. DSc. Eng. Stoyan Hristov
Deputy Chairmen: Dr. Eng. Lachezar Tzotzorkov
Todor Todorov
Prof. Dr. Ivan Milev
Moderator: Prof. Dr. Petar Daskalov
Scientific secretary: Dr. Eng. Kremena Dedelyanova
Organizer: Dr. Krasimir Arsova
Members: Mag.Eng. Dobri Tzvetkov
Mag.Eng. Nikolay Valkanov
Mag. Eng. Huben Hubenov
Mag. Eng. Jossif Leviev
Mag.Eng. Andran Valchev
Prof. DSc. Dimcho Jossifov
Dr. Eng. Vladimir Genevski
Dr. Eng. Konstantin Georgiev
Assoc. Prof. Eng. Kiri Chobanov
Dr. Eng. Ivan Markov
Mag. Eng. Delcho Nikolov
Mag. Eng. Dragomir Draganov
Mag. Eng. Hristo Nikolov
Dr. Eng. Todor Tszonkov
Mag. Eng. Shterjo Shterev
Mag. Eng. Ivan Bogdanov
Mag. Eng. Kostadin Najdenov
Prof. Dr. Paulin Zlatanov
Prof. Dr. Georgi Konstantinov
Assoc. Prof. Dr. Hristo Miklov
Mag. Eng. Stelian Stankov
Mag. Eng. Ognyan Zarev
Mag. Eng. Javor Etimov
Andreas Isipids
Prof. DSc. Ivan Lavor
Prof. Dr. Savao Lazarev
Prof. Dr. Rado Radichev
Prof. Dr. Petko Dimitrov
Mag. Eng. Todor Dimitrov
Assoc. Prof. Dr. Zdravko Iliev
Assoc. Prof. Dr. Valentin Velev
Mag. Eng. Marin Poibernski
Assoc. Prof. Dr. Anatoli Angelov
Assoc. Prof. Dr. Stanislav Topalov
Prof. Dr. Konstantin Trichkov
INTERNATIONAL SCIENTIFIC COMMITTEE

Prof. DSc Stoyan Hristov - Bulgaria
Prof. Dr. Georgi Konstantinov - Bulgaria
Prof. Boris Al. Bogatov - Belarus
Prof. Dr. M. Sulyukanovich - Bosnia and Herzegovina
Prof. Dr. Josef Novak - Czech Republic
Dr. Eng. Hans Yu. Palm - Germany
Prof. Dr. Karsten Drebenstedt - Germany
Prof. Yu. N. Economopoulos - Greece
Prof. Dr. Risto Dambrov - Macedonia
Mag. Eng. Kircho Minev - Macedonia
Prof. Dr. Modrag Gomlanovich - Montenegro
Prof. Jozef Dubinski - Poland
Prof. Dr. Emil Pop - Romania
Prof. Dr. Dumitru Fodor - Romania
Prof. DSc Vladislav N. Popov - Russia
Prof. DSc Anatoliy Galperin - Russia
Prof. DSc Sergey Kornilov - Russia
Prof. DSc M. B. Nosirev - Russia
Prof. DSc Victor Al. Gordeev - Russia
Prof. Dr. Vladimir Pavlovich - Serbia
Prof. Dr. Slobodan Vujic - Serbia
Prof. Dr. Ranko Todorovich - Slovenia
Prof. Dr. Ali Kahrman - Turkey
Assoc. Prof. Dr. Gyunter Tuncher - Turkey
Prof. Dr. Tevfik Gokaylu - Ukraine
Prof. DSc Genadi Pivnyak - Ukraine
Prof. DSc A. Yu. Drizhenko

THEMATIC TOPICS

2. Drilling and blasting technique, transport safety, and work safety. Ventilation of the deep open mines.

3. Information technologies, computer systems, software products in geological prospecting, surveying and mining activity.

5. Draining, stability and consolidation of slopes in open cast mines and quarries. Quarries and dumps and tailings pools.

7. Economy, organization and management of the technological processes and production in the open and underwater mining of minerals. Markets and realization of the products.

8. The mining legislation and its harmonization with European normative base. Educatonal qualification and specialization of mining experts of open cast and underwater mining minerals.
CONTENTS

A. CONTEMPORARY TECHNOLOGIES, SYSTEMS AND METHODS IN OPEN CAST QUARRYING OF COAL, ORE, INDUSTRIAL RAW MATERIALS, ORNAMENTAL ROCKS AND BUILDING MATERIALS. MINERAL PROCESSING AND RECYCLING

A-1 DEVELOPMENT OF OVERBURDEN WITH DRAGLINE IN STRATIFIED DEPOSITS OF PERMAFROST ZONE .. 17
Sergey Panishev, Sergey Ermakov, Alexander Burakov

A-2 THE IMPROVING OF TECHNOLOGIES DEVELOPMENT OF PLACER DEPOSITS .. 24
Sergey Ermakov, Alexander Burakov

A-3 OPEN AND UNDERWATER MINING OF MINERAL DEPOSITS IN BULGARIA .. 32
K. Georgiev, St. Christov

A-4 TECHNOLOGY OF EXPLOITATION FOR OXYX STONES WITH DIAMOND WIRE SAW AND PILOW SAW MACHINE IN THE OPEN PIT QUARRY "MANASTIR", PRILEP .. 42
Risto Dambov, Goran Stoikoski, Zoran Kostoski, Igor Stoikoski

A-5 LAND-RECLAMATION AT OPEN PIT MINES WITHIN THE KOSTOLAC BASIN .. 49
Saša Ilč

A-6 ОСОБЕННОСТИ ТЕХНОЛОГИИ КОМБИНИРОВАННОЙ РАЗРАБОТКИ МРАМОРНЫХ МЕСТОРОЖДЕНИЙ В СУРЫХ КЛИМАТИЧЕСКИХ УСЛОВИЯХ .. 53
A. I. Kosolapov, M. YU. Kaderev, S. A. Kosolapova

A-7 QUALITATIVE-QUANTITATIVE CHARACTERISTICS OF THE MARBLES FROM BELOVODICA AREA (MK) AND OPPORTUNITIES FOR THEIR EXPLOITATION .. 61
Orce Spasovski, Risto Dambov

A-8 POSSIBILITY FOR USING CONSOLE SPREADERS IN THE OPEN PITS OF MINES "MARITSA IZTOK" JSC .. 67
St. Christov, G. Georgiev

A-9 RESEARCHES OF PROCESSING TECHNOLOGY OF FLOTATION TAILING OF SB-HG GOLDCONTAINING ORE OF JIJCIRUT DEPOSIT .. 72
Z. A. Zinchenko, I. A. Tuymin, M. S. Ismoilova, Sh. R. Samihov

A-10 ABOUT APPLICATION OF CRITERION FULL ENERGY EXPENSES AT A COAL MINING AN OPEN WAY .. 80
Tanaino A. S.

A-11 CONTROL OF ORE QUALITY REQUIREMENTS AT A STAGE OF OPEN PIT OPERATION .. 89
I. Gumenik, V. Panchenko, E. Strazhko

A-12 REVIEW OF PROSPECTIVE OPENCAST MINES IN KOSTOLAC COAL BASIN IN SERBIA .. 97
Babović M., Jevtić B., Ivoš V.
<table>
<thead>
<tr>
<th>A-13</th>
<th>ANALYSIS OF CAUSES CONVEYOR BELTS DAMAGES ON THE KOLUBARA OPEN PIT MINES AND PROTECTION POSSIBILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milan Stojaković, Mihailo Petrović</td>
</tr>
<tr>
<td>A-14</td>
<td>APPLICATION OF DEEP SEA ORGANOCHEMIC MINERAL SEDIMENTS FROM THE BLACK SEA BOTTOM FOR PRODUCTION OF CLEAN AND SAFE FOOD</td>
</tr>
<tr>
<td></td>
<td>Dimitar Dimitrov, Petko Dimitrov</td>
</tr>
<tr>
<td>A-15</td>
<td>GEOLOGY AND NON-TRADITIONAL RESOURCES OF THE BLACK SEA</td>
</tr>
<tr>
<td></td>
<td>Dimitar Dimitrov, Petko Dimitrov</td>
</tr>
<tr>
<td>A-16</td>
<td>MINING OPERATION OF TROYANOVO-SEVER OPENCAST MINE</td>
</tr>
<tr>
<td></td>
<td>Georgy Konstantinov, Georgy Trapov</td>
</tr>
<tr>
<td>A-17</td>
<td>ПРИЛОЖЕНИЕ НА ОЦЕНКА НА ЗАВИСИМОСТИТЕ МЕЖДУ ПАРАМЕТРИ В ОТКРТИ РУДНИЦИ</td>
</tr>
<tr>
<td></td>
<td>Юлиян Димитров</td>
</tr>
<tr>
<td>A-18</td>
<td>ПРОБЛЕМИ И ВЪЗМОЖНОСТИ ЗА ЕТАПНО ОТРАБОТВАНЕ НА РУДНИК „ЕЛАЦИТЕ“, БЪЛАГАРИЯ</td>
</tr>
<tr>
<td></td>
<td>Кирил Чобанов, Андрей Андреев, Надежда Чомпалова</td>
</tr>
</tbody>
</table>

B: DRILLING AND BLASTING TECHNIQUE, TRANSPORT AND WORK SAFETY, VENTILATION OF THE DEEP OPENCAST MINES

B-1 | CRITERIA FOR EVALUATION OF THE SEISMIC ACTION OF BLASTING IN THE OPEN PIT MINES |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risto Dambov, Stefko Bosevski, Ilija Dambov</td>
</tr>
<tr>
<td>B-2</td>
<td>IMPACT OF BOTH NUMBER AND LOCALITIES OF MEASURING POINTS ON SOIL OSCILLATION LAW</td>
</tr>
<tr>
<td></td>
<td>Suzana Lutovac, Siobodan Trajković, Risto Dambov, Ljubinko Savić</td>
</tr>
<tr>
<td>B-3</td>
<td>BLAST DESIGN WITH OPTIMAL DELAYING INTERVALS FOR USE OF COMMERCIAL CARTRIDGES EXPLOSIVES AT BANJANI MINES – SKOPJE</td>
</tr>
<tr>
<td></td>
<td>Mile Stefanov, Risto Dambov, Ilija Dambov</td>
</tr>
<tr>
<td>B-4</td>
<td>MEASUREMENT AND ANALYSIS OF BLAST-INDUCED VIBRATIONS IN THE OPEN PIT COPPER MINE „VELIKI KRIVELJ“ BOR</td>
</tr>
<tr>
<td></td>
<td>Lazar Kričak, Milanka Negovanović, Ivan Janković, Dario Zeković</td>
</tr>
</tbody>
</table>

C: INFORMATION TECHNOLOGIES, COMPUTER SYSTEMS, SOFTWARE PRODUCT: IN GEOLOGICAL PROSPECTING, MINE SURVEYING AND MINING ACTIVITY

C-1 | METHODOLOGY OF VISUAL IMPACT ASSESSMENT ON SURFACE MINES AND MEASURES OF MANAGING WITH THE VISUAL RESOURCE FOR THE DESIGN OF SURFACE MINES |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radmila Karanakova Stefanovska, Zoran Panov</td>
</tr>
</tbody>
</table>
C-2 THE ROLE OF THE GPS-SYSTEM IN INTEGRATED CONTROL SYSTEM SKYLINES IN MINE FOR COPPER BUCIM
Todor Cekerovski, Jordan Zivanovic, Kirco Minov

C-3 COMPARISON OF SOME PARAMETERS FROM THE OLD AND THE NEW CONTROL SYSTEM IN MINE BUCIM
Todor Cekerovski, Jordan Zivanovic, Zoran Despodov

C-4 STATIONARITY OF THE MAIN GEOLOGICAL FACTOR - COPPER GRADE - A CHECK OR ACCEPTING A PRIORI?
Veselin Hristov, Stanislav Topalov

D-1 ОЦЕНКА НА ТЕХНИЧЕСКОТО СЪСТОЯНИЕ НА ЕЛЕКТРИЧЕСКАТЕ ДВИГАТЕЛИ ЗА СРЕДНО НАПРЯЖЕНИЕ - ОСНОВА ЗА ВЗЕМАНЕ НА РЕШЕНИЯ, ГАРАНТИРАЩИ ПРОИЗВОДСТВЕНАТА ПРОГРАМА
Лъчезар Цончаров, Делян Николов, Николай Плетков, Николай Минков, Петър Денчичин

D-2 ABOUT THE SISTEM EARTHING IN THE 6 KV ELECTRICAL GRIDS IN THE OPENCAST MINES
Ivan Stolov

D-3 HOISTING- TRANSPORTING EQUIPMENT SELECTION FOR SERVICE OF OPEN BUILDING STORAGE
Kalin Radlov, Jivko Iliev, E. Evtim. Kartselin

D-4 EQUIPMENT FOR WASTE PILES FORMATION AT THE JSC "BELARUSKALI"
Konoplyank I.A., Dovnar V.N., Rohouski A.M.

D-5 POTASH FERTILIZERS TRANSPORTATION AND STORAGE AT THE PROCESSING PLANTS OF THE JSC "BELARUSKALI"
Scherba V.J., Konoplyanik I.A., Konoplyanik A.I.

D-6 EQUIPMENT FOR BULK POTASSIUM CHLORIDE PROCESSING INTO GRANULATED FERTILIZER
Prusnak V.J., Baiko A.E., Konoplyanik A.V.

D-7 ANALYSIS AND SELECTION OF THE PROCESS FLOWSHEET OF DISSOLUTION OF SYLVA NITE BY PRODUCTION OF KCL USING THE METHOD OF THERMAL DISSOLUTION AND CRYSTALLIZATION
Zajets I.M., Konoplyanik A.V., Adenho I.A.
E. DRAINING, STABILITY AND CONSOLIDATION OF SLOPES IN OPENCAST MINES AND QUARRIES. QUARRIES WASTE DUMPS AND TAILINGS POOLS

E-1 ИЗМЕСТВАНЕТО НА Р. САЗЛИЙКА - АКТУАЛЕН ПРОБЛЕМ НА ПЕРСПЕКТИВНОТО РАЗВИТИЕ НА РУДНИК „ТРОЯНОВО-СЕВЕР”...249
Й. Попов

E-2 ENSURING THE STABILITY OF THE EAST WASTE DUMP AT THE ELATSITE MINE – AN IMPORTANT CONDITION FOR SAFE WORK ...255
Stoyan Christov, Konstantin Naidenov

E-3 DETERMINATION OF GRAVEL COMPUTATIONAL PARAMETERS OF ELATZITE OPEN PIT EASTERN DUMP ...263
Violeta Ivanova

E-4 REGULATION OF PHYSICAL/ CHEMICAL AND MECHANICAL PROPERTIES OF POTASH FERTILIZERS ...271
Krutko N. P., Dovnar D. N., Ahmadieva L. V.

E-5 THE RELIABILITY OF CHOICE FOR WATER SUPPLY SYSTEM OF THE STANARI THERMAL POWER PLANT ...276
Pavlović V., Šubaranović T., Polomić D., Jakovljević I.

E-6 AN INTEGRAL EVALUATION OF THE EARTH’S SURFACE SUBSIDENCE BY MINING OUT OF DEPOSITS ...281
Mihail Vulkov

E-7 ABOUT THE INFLUENCE OF THE WATER CONTENTS IN ROCK MASS ON THE SLOPE STABILITY ...281
Mihail Vulkov

E-8 DEFINITION OF THE MAXIMUM-ADMISSIBLE HEIGHT OF A CONE-SHAPED SAILING TAKING INTO ACCOUNT ITS ANISOTROPY UNDER THE SCHEME OF AN IS RIGID-PLASTIC BODY ...294
Chansihev A. I., Efimenko L. L.

E-9 OPEN-PIT BENCH STATE ASSESSMENT USING GEORADAR TECHNOLOGIES ...300
Melnikov N. N., Kalashnik A. I., Kalashnik N. A.

E-10 APPROACH TO REMEDIATION OF LANDSLIDE ON THE WORKING BENCH IN BUCIM OPEN PIT MINE ...304
Kircho Minov, Zoran Panov, Radmila Kakanakova Stefanovska, Slobodan Stojanov, Blagica Doneva

E-11 PREVIEW OF IRRIGATION SYSTEM FOR THE DRMNO OPEN PIT MINE OUTER DUMP SOLUTION ...316
Milanović R., Dimitrijević B., Vuković Z., Pavlović M.

E-12 DESIGN OF AN INTERNAL WASTE DUMP WITHIN THE BOUNDARIES OF THE OPEN PIT ...316
Zoran Panov, Kircho Minov, Radmila Kakanakova Stefanovska, Slobodan Stojanov, Blagica Doneva
F. ECOLOGICAL MONITORING, RECYCLING AND WASTE UTILIZATION.
RECLAMATION OF BROKEN LANDS

F-1
CHARACTERISTICS OF THE AREA AND THE SUBSTARTERS CREATED BY OPEN-CAST COAL MINING IN THE KOLUBARA BASIN
Saša Ilić

F-2
ENVIRONMENT PROTECTION SYSTEM FOR TRANSPORT AND DISPOSAL OF ASH AND GYPSUM FROM AES GALABOVO TPP TO NON-HAZARDOUS WASTE DISPOSAL AREA
Huben Hubenov, Krasimir Galabov, Ivan Arseniev

F-3
ЕНЖЕНЕРНО-ГЕОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКИ БЕЗОПАСНОГО ОСВОЕНИЯ ГОРНОПРОМЫШЛЕННЫХ ПРИРОДНО-ТЕХНОГЕННЫХ СИСТЕМ
Анатолий Гальперин, Юрий Кириченко, Сергей Пуневский, Юрий Кутепов

F-4
EFFICIENT AND ECOLOGICALLY SAFE TECHNOLOGIES FOR OPENCAST GEOTECHNOLOGICAL EXTRACTION OF METALS IN ARTIFICIAL FACILITIES IN SITU
Vladimir Danov

F-5
TECHNICAL RECLAMATION OF SLOPES OF WASTE DUMP OF COPPER MINING
M. Petrov, R. Petrova

F-6
BIOLOGICAL RECLAMATION OF LAND DISTURBED IN OPEN PIT MINING OF COPPER ORE (THE EXAMPLE OF "ASSAREL MEDET AD"
R. Petrova, M. Petrov

F-7
ENRICHMENT AND PROCESSING OF BELARUS PHOSPHATES
Krutko N.P., Shevchuk V.V., Mozheiko F.F., Potkina T.N., Goncharik I.I.

F-8
INTENSIFICATION OF COLLECTIVE ACTION OF HIGHER ALIPHATIC AMINE SALTS DURING FLOTATION OF POTASH ORES
Dintievskaya L. V., Osipova E. O., Shevchuk V. V.

F-9
REMOVAL OF Cu(II) IONS FROM WATERS USING BIOGENIC HYDROGEN SULPHIDE
Svetlana G. Bratkova, Anatoliy T. Angelov, Katerina T. Nikolova and Elitsa Babanova

F-10
THE APPLICATION OF THE INFORMATION SYSTEMS WITH POSSIBILITY AND PARTICIPATION IN SOME INDUSTRY PROCESSES
Aleksandar Krstev, Boris Krstev, Goce Vuckovski, Zoran Vuckovski, Dejan Krstev

F-11
THE DESCRIPTIVE STATISTICS FOR THE INPUT AND OUTPUT PARAMETERS IN THE NEW SELECTIVE GALENA AND SPHALERITE FLOTATION IN SASA MINE, MACEDONIA
Boris Krstev, Blagoj Golomeov, Aleksandar Krstev, Zoran Vuckovski, Dejan Krstev, Goce Vuckovski

F-12
HEAVY METALS IN THE SURROUNDING WATER AND SEDIMENTS OF TAILING DAM OF SASA MINE
Afrodita Zendelska, Mirjana Golomeova, Boris Krstev, Blagoj Golomeov, Aleksandar Krstev

F-13
RELOCATION OF NEW AND REPLACING POWER UNITS DEPENDING ON THE BALANCE OF LIGNITE RESERVES AND OPTIMISATION OF COAL SUPPLY IN MARITSA EAST COMPLEX
Iv. Arseniev, R. Krstev, Kr. Bliznashki, V. Petrova
F-14 HYDRO TECHNICAL FACILITIES FOR LEADING OF HIGH POLLUTED DRAINED WATER FROM THE EAST DUMP TO MINE “ASAREL”

Minail Petrov

F-15 CONCENTRATION OF HEAVY METALS IN THE ENVIRONMENT AROUND ZLETOVO MINES

Orce Spasovski, Trajce Mitev, Zlatko Sovreski

G. ECONOMY, ORGANIZATION AND MANAGEMENT OF THE TECHNOLOGICAL PROCESSES AND PRODUCTION WORKS IN THE OPEN AND UNDERWATER MINING OF MINERALS. MARKETS AND REALIZATION OF THE PRODUCTS

G-1 ECONOMIC AND FINANCIAL ANALYSIS OF INVESTMENT IN COAL MINE

Vucetic A., Stojanovic Lj., Pesic M., Vucetic S.
THE RELIABILITY OF CHOICE FOR WATER SUPPLY SYSTEM OF THE STANARI THERMAL POWER PLANT

Pavlović V.1, Šubaranović T.2, Polomčić D.3, Jakovljević I.4

ABSTRACT

Company EFT Mine and Thermal power plant Stanari d.o.o. planes to the end 2013. years to con: Thermal power plant with power of 420 MW in Stanari (Bosnia and Herzegovina). This paper presents analysis of choices of number and location dewatering wells from the aspect of water supply reliability of the thermal power plant in town Stanari.

Key words: Thermal power plant, Stanari, dewatering wells.

1. Introduction

For the need of reliable water supply of the future thermal power plant “Stanari”, with 420 MW output it is necessary, in order to check system’s working reliability, to perform preliminary analysis number of wells even at an early phase, so that they can provide quantity of water of about 1600 m³/h certainty.

Location of the power plant is in the central part of Republika Srpska, respectively in the northern Bosnia and Herzegovina and it is in Doboj municipality (Fig 1.).

Fig. 1. Geographical position of the mine and future power plant “Stanari”

1 Prof. Dr Vladimir Pavlovic. University of Belgrade, Faculty of Mining and Geology, Dijasina 7, Belgrade, Serbia, vlada@eu
2 Mr Tomislav Šubaranovic. University of Belgrade, Faculty of Mining and Geology, Dijasina 7, Belgrade, Serbia, tomac@rgf.bg.ac.rs
3 Prof. Dr Dušan Polomčić. University of Belgrade, Faculty of Mining and Geology, Dijasina 7, Belgrade, Serbia
4 Dr Ivica Jakovljević. EFT Mine and thermal power plant Stanari d.o.o., Stanari, Bosnia and Herzegovina
place where the plant should be built is a plateau on a hilly and montaneous terrain, of mostly age and steep slopes. On the south side of the exploration area which is planned for power plant there are river basins of rivers Radnja and its tributary river Ostruznja. Northern side of the network of creeks Klasnjak, Kosnjak, Radava and Lipanja. On the northern and of the envisaged location, there is a developed road network as well as the Sunja – Doboj railway:

g data obtained by the hydrogeological survey of the location of the planned thermal power plant groundwater level was constructed in the area of the future thermal power plant "Stanari" (Fig. 2.)

2. Selection of the Number of Wells

An increase of the reliability of the system of wells can be made in advance through the predicted reliability of units or by the introduction of parallel lines. When the selection and evaluation of certain reserves is done, it is necessary to determine the conditions for the normal function of the system, namely: the interval of its decrease and to determine the state of failure. For a normal system function, a value of the planned capacity (Q) is required. In the period of the state of permissible partial failure the system would provide the capacity which is not less than \(Q_d = K_d \cdot Q \). The limit value of the coefficient of reliability, which can be anything from 0 to 1, is defined based on parameters of reliability of the system \(\Phi \), the influence of working environment, factors of organization (Q) and permissible level of capacity of the system of wells within a specified time. For the value \(K_d = 0 \) total failure of the system within a time is allowed, while for \(K_d = 1 \) the decrease of the planned capacity is not allowed.
The basic type of structure of the reserve of the system reliability is using the parallel number.

Optimization is reduced to the finding of such number and arrangement of wells that at minimum level provides the necessary reliability by simultaneous operation.

The reliability of the system is increased with increasing the number of reserve lines or elements or reserve coefficient which represents the relation between conditionally set number of reserve \(N_\text{r} \) (\(N_\text{r} = N_0/N_\text{r} \)) wells \((K = N_\text{r}/N_0) \), when the system technologically consists of \(N = N_0 + N_\text{r} \) number of wells. If the minimal number of wells whose failure causes the system failure the following relations are valid:

\[
N_\text{r} = N - M + 1, \quad i = N - N_0 + 1 = N_\text{r} + 1, \text{ so:}
\]

\[
N_\text{r} = M - 1.
\]

When the reserve is used by the principle of simultaneous function of all wells, each and even the system in function in the normal conditions has the capacity \(0 \). The limit state before the system is the state when only conditionally essential wells \((N_\text{r}) \) remain in function. Capacity of each well in increases to the level \(K = Q/N \). The failure of \(M \) wells leads to the system failure. In this way, the number of basic elements of system is determined based upon the value of \(Q \). Although the total is realized within the allowed limits, it is lower than planned capacity \((Q_\text{pl} > Q) \), so that decreasing of the number of wells in function usually leads to the increase of capacity of remaining wells in function.

The remaining number of wells in the water supply system depends from the given value \(K_\text{r} \) number of possible wells with reserve is \(N = 2 \). While using the reserve of the capacity with simultaneous function of three lines or groups of wells, the capacity along each line is \(Q/N \). For \(N = 2 \) capacity of or approximately \(0.5^*Q \). When placement is being done of any larger number of wells the initial capacity well is less than \(0.5^*Q \). If given value \(K_\text{r} < 0.5 \), two wells allow realization of the system reserve. Work provides the function of only one well. With \(N = 3 \) the capacity of one well is \(Q/3 = 0.33^*Q \). Working such system is provided with function of any two wells \((0.5^*Q < 0.66^*Q) \) so conditionally there are \(t \) and one backup well.

Water demand for water supply of the future thermal plant “Stanari” will be provided with functioning wells with determined optimal capacity of 8 l/s each. As determined limit value of the coefficient of utilization the reliability of function of each well from \(K_\text{r} = 0.65 \) than it is clear that two wells do not provide reliability of the reserve of the system water supply \((0.50 < 0.65) \)

For three wells \((N = 3) \), working state of the system is provided with function of any two \((0.65^*Q < 0.66^*Q)\) so conditionally there are two basic and one reserve well. The conditional coefficient of reserve is \(K_\text{r} = N_\text{r}/N_0 = 0.5 \).

General task of calculation of system reliability of the system of wells is to determine indicator that characterize the function. The calculation contains defining criteria and types of system failures, also indicators and determining structural schemes based on the analysis of the system, including repairing and control.

Mostly used indicators of reliability are mean time of the function until the failure of the probability of the set time, the intensity of the cancellation and renewal as well as stationary probe work. Flows crossing the state of recovery to function state, and vice versa define the transition intensity and \((\beta) \).

The function of the system to the failure, as a continuous random value, can be described with distribution depending of the system's features and its elements, working conditions, character of failure. Simpliest and the mostly used is the exponential distribution function with the following function of distribution:

\[
F(t) = P(T < t) = 1 - \exp(-\lambda t),
\]

where: \(T \) — work duration, \(t \) — given time of work, \(\lambda \) — distribution parameter

Distribution parameter is:

\[
f(t) = dF(t)/dt = \lambda \exp(-\lambda t).
\]

Reliability function is:
\[P(t) = 1 - F(t) = \exp(-\lambda t). \]
(2.5)

Mean time of function until failure:
\[t_r = \frac{1}{\lambda}. \]
(2.6)

Failure intensity:
\[\lambda(t) = \lambda \cdot \exp(-\lambda \cdot t). \]
(2.7)

Structural schemes which represent graphical display of wells in the system unambiguously can define
function or failure of the system of wells. Elements of the system can be connected in a serial, parallel or
combined way. If the failure of elements simultaneously represents failure of the system the connection is
serial but if the system fails only after the failure of a part or all the elements it is the parallel type of
connection.

The system of the wells is a system that consists of \((n)\) parallely connected elements, so the probability
of the system function \(P_S(t)\) for the probabilities of function of each element \(P_i(t)\), is:
\[P_S(t) = P_1(t) \cdot P_2(t) \cdot \ldots \cdot P_n(t) = \prod_{i=1}^{n} P_i(t). \]
(2.8)

The group of wells is a system which consists of \((m)\) parallely connected elements, where the probability
of failure of each \(Q_j(t) = 1 - P_j(t)\), so the probability of the system failure is:
\[Q_S(t) = Q_1(t) \cdot Q_2(t) \cdot \ldots \cdot Q_m(t) = \prod_{j=1}^{m} Q_j(t). \]
(2.9)

Probability of the system function is:
\[P_S(t) = 1 - \prod_{i=1}^{n} (1 - P_i(t)) = 1 - \prod_{j=1}^{m} (1 - \exp(-\lambda j t)). \]
(2.10)

Having in mind the existence of the water reservoirs as a part of the future thermal power plant
"Stanari", for the smooth operation of 24 hours, required reliability of the system of three wells is 95%.

Reliability of function of each and every well, as a serially connected sequence of elements is:
\[P_S = P_1 \cdot P_2 \cdot P_3 \cdot P_4 \cdot P_5 = 0.95 \cdot 0.95 \cdot 0.95 \cdot 0.95 = 0.65. \]

Where: \(P_1\) - reliability of the function of pump,
\(P_2\) - reliability of the function of other elements of pump,
\(P_3\) - reliability of the function of the well and complete pipeline,
\(P_4\) - reliability of the impact of working environment,
\(P_5\) - fail of reliability due to organizational factors.

Stationary probability of thermal power plant water supply system from three wells is:
\[P_S = 1 - (1 - P_5)^3 = 1 - (1 - 0.65)^3 = 0.96. \]

With a group of three wells, with the reserve water tank, the possibility of the increase of capacity and
reliability of function of individual wells as needed, required safety of water supply of the future thermal power
plant "Stanari" is completely achieved.

3. Conclusion

In this work, the possibility of choice of number of wells for the reliable water supply of the future thermal
power plant "Stanari" in Stanari with capacity of around 16 l/s is explored. Optimization came down to finding such
number of wells that at the minimal level of function, by their simultaneous function provide required reliability.

Based on hydrogeological investigation data it has been concluded that the location on which the
siting of the future thermal power plant "Stanari" is planned is potentially rich with underground waters
essential for safe water supply.
With a group of three wells with capacity of 8 l/s each (one in reserve), with a reserve water possibility of the capacity increase and reliability of function of individual wells as needed, the required water supply of future thermal power plant "Stanari" is achieved completely.

Literature
