CASA DE S. M. EL REY

CREDENCIAL

Nº 164/2012

SS.AA.RR. los Príncipes de Asturias, acediendo a la petición que tan amablemente Les ha sido formulada, han tenido a bien aceptar la

PRESIDENCIA DEL COMITÉ DE HONOR

del "6th EUROPEAN CONGRESS OF PHARMACOLOGY,
EPHAR 2012", que se celebrará en Granada del 17 al 20 de julio próximo.

Lo que me complace participarle para su conocimiento y efectos.

PALACIO DE LA ZARZUELA, 2 de mayo de 2012

EL JEFE DE LA CASA DE S.M. EL REY,

[Signature]

SEÑOR PRESIDENTE DEL COMITÉ ORGANIZADOR DEL CONGRESO.

GRANADA
Committees

Committee of Honour
President: Their Royal Highnesses, The Prince and the Princess of Asturias

Members
The Honorable Health Minister, Mrs. Ana Mato
The Honorable President of the Regional Government, Mr. José Antonio Griñán Martínez
The Honorable Mayor of Granada, Mr. José Torres Hurtado
Rector of the University of Granada, Mr. Francisco González Lodeiro

Organizing Committee
Chair: Antonio Zarzuelo, University of Granada
Deputy Chair: Julio Gálvez, University of Granada
Vice-President: Teresa Tejerina, President of the Spanish Society of Pharmacology, University Complutense of Madrid
Secretary: Rosario Jiménez, University of Granada
Treasurer: Fermín Sánchez, University of Granada
Juan Duarte, University of Granada
Manuel García, University of Granada
José P. de la Cruz, Vice-President of the Spanish Society of Pharmacology, University of Malaga
José A. González-Correa, Treasurer of the Spanish Society of Pharmacology, University of Malaga
Ibon Gutierrez, Head Rovi Granada R&D Center, Rovi Laboratories, S.A.
Olga Geniloud, Scientific Director of Medina Foundation R&D, Granada
Amadeu Gavalda, Head of Integrative Pharmacology, Almirall SA, Scientific Committee

Scientific Committee
Chair: Juan Tamargo, University Complutense of Madrid

Local Members
Julio Benítez, University of Extremadura
Pilar D'Ocón, Executive Committee of SSP, University of Valencia
Juan Duarte, University of Granada
Antonio García, University Autónoma of Madrid
Jesús A. García-Sevilla, University of the Balearic Islands
Juan C. Laguna, University of Barcelona
Juan C. Leza, University Complutense of Madrid
María Isabel Lucena González, University of Málaga
Manuel Vázquez, Secretary of the Spanish Society of Pharmacology, University of Barcelona
International Members
Filippo Drago, Catania University, Italy
Aletta D. Kranenbeld, Utrecht University, The Netherlands
Charis Liai, University of Athens, Greece
Eeva Moilanen, Tampere University, Finland
Maria Emilia Monteiro, University of Lisbon, Portugal
Ulf Simonsen, University of Aarhus, Denmark
Arthur Weston, University of Manchester, UK

Scientific Advisory Committee
Marija Carman-Krzan, University of Ljubljana, Slovenia
Paulo Correia de Sá, University of Porto, Portugal
Jukka Hakola, University of Oulu, Finland
Robin Hiley, University of Cambridge, England
Janet Mifsud, University of Malta, Malta
Daniel Moura, University of Porto, Portugal
Peter Pavek, Pharm Dr., Ph.D., Charles University, Czech Republic
Carlo Riccardi, University of Perugia, Italy
Hans-Uwe Simon, University of Bern, Switzerland
Öner Süzer, Istanbul University, Turkey

ESSENTIAL READING IN

combinatorial drug therapy

Drug-Acceptor Interactions - Modeling theoretical tools to test and evaluate experimental equilibrium effects by Niels Bindslev, MD, Associate Professor and Lecturer in Physiology at the Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.

An in-depth, yet controversial, exploration of existing tools for analysis of dose-response studies at equilibrium or steady state, this book is essential reading for post-graduate students and researchers engaged in the study of systems biology, networks, and the pharmacodynamics of natural or industrial drugs, as well as for medical clinicians interested in drug application and combinatorial drug therapy.

Price: €76 excl. VAT
ISBN: 978-91-977071-0-7
428 pages, 260 illustrations of which 140 in colour

To order, send an email to: info@co-action.net - mention campaign code CC2012-1 to receive free shipping
Differences in direct pharmacological effects and antioxidative properties of mature breast milk and an infant formula

S. Spasic1, N. Lugonja1, O. Laugier1, A. Nikolic-Kokic2, Z. Orescanin-Dusic3, I. Spasojevic3, M.M. Vrvic4

1Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Department of Chemistry, Serbia, 2Institute for Biological Research, University of Belgrade, Department of Physiology, Serbia, 3Institute for Multidisciplinary Research, University of Belgrade, Redox science, Serbia, 4Faculty of Chemistry, University of Belgrade, Biochemistry, Serbia

Early onset and exclusive breastfeeding provides a significant health benefit to infants in comparison to infant formulas. There is growing evidence that presence of some specific protein components in mother’s milk are responsible for observed significant health benefit in infants feed with mother’s milk. The aim of this paper was to compare mature breast milk and a standard infant formula by examining their effects on smooth muscle contraction and their antioxidative properties. Electron paramagnetic resonance (EPR) spin-trapping spectroscopy was used to compare the antioxidative capacities of breast milk (obtained on the 9th week of lactation) with a commercial infant formula against hydroxyl radical production in the Fenton reaction. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and sulphhydryl group (–SH) content were determined in the milks. Pharmacological research was performed on the isolated rat uterus obtained from virgin female Wistar rats (200-250g; 3 months of age). All protocols for handling experimental animals were approved by the local ethics committee for animal experimentation which strictly follows international regulations. The rats were kept at 22°C, housed three per cage and fed ad libitum. Rat uteri were isolated during the oestrous phase of the oestrous cycle. The oestrous phase was determined by daily vaginal ravage. All rats were killed by cervical dislocation. The uterine horns were rapidly excised and carefully cleaned of surrounding connective tissue and mounted vertically in a 10 ml volume organ bath containing De Jalon’s solution (NaCl 154 mM, KCl 5.6 mM, CaCl2 x 2H2O 0.41 mM, NaHCO3 5.9 mM and glucose 2.8 mM), under 1 g tension. The bath was maintained at 37°C and aerated with 95% oxygen and 5% carbon dioxide. After an equilibration period (about 30 min) when the uteri established stable calcium ion-induced contractions, single doses of either breast milk or the infant formula (500µl) were applied. Myometrial tension was recorded isometrically with a TSZ-04-E isolated organ bath transducer (Experimetra, Budapest; Hungary).

Results were tested by one-way ANOVA and post hoc compared by Tukey’s HSD t-test. Statistically significant increased total SOD was observed in the breast milk in comparison to infant formula. The content of -SH groups was statistically significant decreased in infant formula in comparison to the breast milk. In contrast to the infant formula, breast milk exerted a relaxing effect on isolated non-vascular smooth muscle. Using EPR and the Fenton reaction as a radical-generating system, we showed that breast milk possesses a three-fold higher antioxidative activity against the hydroxyl radical compared to the infant formula. In both samples, generation of the hydroxyl radical (·OH) led to the production of carbon-centered radicals. The ascorbyl radical was detected in breast milk but not in the infant formula.

Human milk has direct pharmacological effects and provides better antioxidant protection than the infant formula due to the presence of specific protein components such as human SOD.
Differences in direct pharmacological effects and antioxidative properties of mature breast milk and an infant formula

S.D. Spasić¹, N. Lugonja¹, O. Laugier¹, Z. Oresčanin-Dušić¹, A. Nikolić-Kokić², I. Spasojević³, M.M. Vrvić⁴

¹Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia
²Department of Physiology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, Serbia
³Institute for Multidisciplinary Research, University of Belgrade
⁴Faculty of Chemistry, University of Belgrade, Studentski trg 16, Belgrade, Serbia

Summary

Early onset and exclusive breastfeeding provides a significant health benefit to infants in comparison to infant formulas. There is growing evidence that presence of some specific protein components in mothers milk are responsible for observed health benefits in infants feed with mothers milk. The aim of this paper was to compare different antioxidative activities in breast milk and infant formula against the hydroxyl radical production in the Fenton reaction. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and their vitamin C and sulfhydryl group (–SH) contents were determined in the milks. Pharmacological research was performed on the isolated rat uterus. In contrast to the infant formula, breast milk exerted a relaxing effect on isolated non-vascular smooth muscle. Using EPR and the Fenton reaction as a radical-generating system, we showed that breast milk possesses a three-fold higher antioxidative activity against the hydroxyl radical compared to the infant formula. In both samples, generation of the hydroxyl radical (•OH) led to the production of carbon-centered radicals. The ascorbyl radical was detected in breast milk but not in the infant formula. Human milk has direct pharmacological effects and provides better antioxidant protection than the infant formula due to the presence of specific protein components such as human SOD.

Introduction

Positive correlation between breastfeeding and the reduction of certain health risks is well established. The general recommendation is to breastfeed newborns for 6 months exclusively, and then to introduce complementary foods and continue breastfeeding. Namely, breastfeeding is associated with the reduction of the risk for acute otitis media, non-specific gastrointestinal infections, severe lower respiratory tract infections, atopic dermatitis, asthma (in toddlers), obesity, type 1 and 2 diabetes, childhood leukemia, sudden infant death syndrome (SIDS), and necrotizing enterocolitis. There is no correlation between breastfeeding and cognitive performance in term infants, while the relationship between breastfeeding and cardiovascular diseases is still not clear. The presence of specific protein components in human breast milk may be responsible for significant health benefits observed in breastfed infants. A "shooting" proteomics study examined the differences in the on- and off-defense-related proteins of human and bovine milk identifying 368 and 369 proteins, respectively. Significant quantitative differences between the human and bovine milk were observed for 33 proteins. Human breast milk contains enzymes with antioxidative activities. Catabolic Cu, Zn superoxide dismutase (CuZnSOD) and mitochondrial MnSOD are present in human milk, both in the colostrum and in the mature milk. It is important to note that the total concentration of SOD in human milk is 5 times lower than in human plasma, but 2-3 times higher in comparison to bovine milk. Significant changes in SOD activity at different phases of human lactation were observed, being highest during the third week of lactation. Human breast milk is rich in other antioxidative enzymes, such as glutathione peroxidase (GSH-Px).

In this study we compared the direct pharmacological effects of breast milk and infant formulas on non-vascular smooth muscles. The isolated uterus is very suitable for this type of study because of the presence of complex signal transduction systems, high levels of membrane receptors and the non sensitivity of uterine smooth muscles. We also measured the activities of key antioxidant enzymes (SOD and GSH-Px) and sulfhydryl groups (–SH) in different experimental animals. 1 A "shooting" proteomics study examined the differences in the on- and off-defense-related proteins of human and bovine milk identifying 368 and 369 proteins, respectively. Significant quantitative differences between the human and bovine milk were observed for 33 proteins. Human breast milk contains enzymes with antioxidative activities. Catabolic Cu, Zn superoxide dismutase (CuZnSOD) and mitochondrial MnSOD are present in human milk, both in the colostrum and in the mature milk. It is important to note that the total concentration of SOD in human milk is 5 times lower than in human plasma, but 2-3 times higher in comparison to bovine milk. Significant changes in SOD activity at different phases of human lactation were observed, being highest during the third week of lactation. Human breast milk is rich in other antioxidative enzymes, such as glutathione peroxidase (GSH-Px).

Results

Statistically significant increased total SOD was observed in the breast milk in comparison to infant formula. The content of GH groups was statistically significant decreased in infant formula in comparison to the breast milk. In contrast to the infant formula, breast milk exerted a relaxing effect on isolated non-vascular smooth muscle (Table 1). Using EPR and the Fenton reaction as a radical-generating system, we showed that breast milk possesses a three-fold higher antioxidative activity against the hydroxyl radical compared to the infant formula. In both samples, generation of the hydroxyl radical (•OH) led to the production of carbon-centered radicals. The ascorbyl radical was detected in breast milk but not in the infant formula (Figure 2). Human milk has direct pharmacological effects and provides better antioxidant protection than the infant formula due to the presence of specific protein components such as human SOD (Figure 1).

Table 1. The activities of the antioxidant defense system enzymes in breast milk and in the infant formula. The results are expressed as the mean ± SD. *p<0.05, **p<0.01, ***p<0.001.

<table>
<thead>
<tr>
<th>Samples</th>
<th>breast milk</th>
<th>Infant formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOD (NADPH/min)</td>
<td>5.00 ± 2.3***</td>
<td>1.56 ± 0.56</td>
</tr>
<tr>
<td>(µ L)</td>
<td>35.6±2.4**</td>
<td>23.3±3.1</td>
</tr>
<tr>
<td>GSH-Px (µmol/min</td>
<td>9.72±2.16***</td>
<td>1.58 ± 0.75</td>
</tr>
<tr>
<td>(µ L)</td>
<td>12.02±0.3</td>
<td>15.58 ± 0.2</td>
</tr>
<tr>
<td>Vit C (mg/L)</td>
<td>44 ± 9</td>
<td>30 ± 8</td>
</tr>
</tbody>
</table>

Discussion

Pharmacological research was performed on the isolated rat uterus obtained from virgin females Wistar rats (200-250g, 3 months of age). All protocols for handling experimental animals were approved by the local ethics committee for animal experimentation which strictly follows international regulations. All rats were killed by cervical dislocation. The uterine horns were rapidly excised and carefully cleaned of surrounding connective tissue and mounted vertically in a 10 mL volume organ bath containing De Jalon’s solution (NaCl 154 mM, KCl 5.6 mM, CaCl₂ 0.41 mM, NaHCO₃ 5.9 mM and glucose 2.8 mM), under 1 g tension. The bath was maintained at 37 °C and aerated with 95% oxygen and 5% carbon dioxide. After an equilibration period (about 30 min) the uterine established stable calcium concentration, contraction and relaxation of uterine smooth muscles. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and their vitamin C and sulfhydryl group (–SH) contents were determined in the milks. Pharmacological research was performed on the isolated rat uterus. In contrast to the infant formula, breast milk exerted a relaxing effect on isolated non-vascular smooth muscle. Using EPR and the Fenton reaction as a radical-generating system, we showed that breast milk possesses a three-fold higher antioxidative activity against the hydroxyl radical compared to the infant formula. In both samples, generation of the hydroxyl radical (•OH) led to the production of carbon-centered radicals. The ascorbyl radical was detected in breast milk but not in the infant formula (Figure 2). Human milk has direct pharmacological effects and provides better antioxidant protection than the infant formula due to the presence of specific protein components such as human SOD (Figure 1).

Table 1. The activities of the antioxidant defense system enzymes in breast milk and in the infant formula. The results are expressed as the mean ± SD. *p<0.05, **p<0.01, ***p<0.001.

<table>
<thead>
<tr>
<th>Samples</th>
<th>breast milk</th>
<th>Infant formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOD (NADPH/min)</td>
<td>5.00 ± 2.3***</td>
<td>1.56 ± 0.56</td>
</tr>
<tr>
<td>(µ L)</td>
<td>35.6±2.4**</td>
<td>23.3±3.1</td>
</tr>
<tr>
<td>GSH-Px (µmol/min</td>
<td>9.72±2.16***</td>
<td>1.58 ± 0.75</td>
</tr>
<tr>
<td>(µ L)</td>
<td>12.02±0.3</td>
<td>15.58 ± 0.2</td>
</tr>
<tr>
<td>Vit C (mg/L)</td>
<td>44 ± 9</td>
<td>30 ± 8</td>
</tr>
</tbody>
</table>

Discussion

Pharmacological research was performed on the isolated rat uterus obtained from virgin females Wistar rats (200-250g, 3 months of age). All protocols for handling experimental animals were approved by the local ethics committee for animal experimentation which strictly follows international regulations. All rats were killed by cervical dislocation. The uterine horns were rapidly excised and carefully cleaned of surrounding connective tissue and mounted vertically in a 10 mL volume organ bath containing De Jalon’s solution (NaCl 154 mM, KCl 5.6 mM, CaCl₂ 0.41 mM, NaHCO₃ 5.9 mM and glucose 2.8 mM), under 1 g tension. The bath was maintained at 37 °C and aerated with 95% oxygen and 5% carbon dioxide. After an equilibration period (about 30 min) the uterine established stable calcium concentration, contraction and relaxation of uterine smooth muscles. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and their vitamin C and sulfhydryl group (–SH) contents were determined in the milks. Pharmacological research was performed on the isolated rat uterus. In contrast to the infant formula, breast milk exerted a relaxing effect on isolated non-vascular smooth muscle. Using EPR and the Fenton reaction as a radical-generating system, we showed that breast milk possesses a three-fold higher antioxidative activity against the hydroxyl radical compared to the infant formula. In both samples, generation of the hydroxyl radical (•OH) led to the production of carbon-centered radicals. The ascorbyl radical was detected in breast milk but not in the infant formula (Figure 2). Human milk has direct pharmacological effects and provides better antioxidant protection than the infant formula due to the presence of specific protein components such as human SOD (Figure 1).

Table 1. The activities of the antioxidant defense system enzymes in breast milk and in the infant formula. The results are expressed as the mean ± SD. *p<0.05, **p<0.01, ***p<0.001.

<table>
<thead>
<tr>
<th>Samples</th>
<th>breast milk</th>
<th>Infant formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOD (NADPH/min)</td>
<td>5.00 ± 2.3***</td>
<td>1.56 ± 0.56</td>
</tr>
<tr>
<td>(µ L)</td>
<td>35.6±2.4**</td>
<td>23.3±3.1</td>
</tr>
<tr>
<td>GSH-Px (µmol/min</td>
<td>9.72±2.16***</td>
<td>1.58 ± 0.75</td>
</tr>
<tr>
<td>(µ L)</td>
<td>12.02±0.3</td>
<td>15.58 ± 0.2</td>
</tr>
<tr>
<td>Vit C (mg/L)</td>
<td>44 ± 9</td>
<td>30 ± 8</td>
</tr>
</tbody>
</table>