Belgrade Food International Conference

Food, health and well being

Belgrade, 26th to 28th November 2012.
Belgrade Food International Conference

Prof. Dr. Marija Gavrović-Jankulović, President of the Belgrade Food International Conference

Scientific Committee:

Prof. Dr. Tanja Ćirković Veličković (President)
Dr. Estelle Bonnin
Dr. Ivan Minkov
Dr. Guro Gafvelin
Dr. Theodore Sotiroudis
Dr. Arnd Petersen
Dr. Joost Smit
Dr. Marija Glibetić
Prof. Dr. Zoran Vujčić
Prof. Dr. Živoslav Tešić
Prof. Dr. Miroslav Vrvić

Organizing Committee:

Dr. Dragana Stanić-Vučinić (President)
Dr. Nenad Milosavić
Milica Grozdanović
Jana Ognjenović
Marija Stojadinović
Jelena Radosavljević
Jasna Nikolić
Content:

1. Session 1: Enzymes in food processing
2. Session 2: Wastes and biomass valorization
3. Session 3: Supplements, micronutrients and food additives
4. Session 4: Food antioxidants
5. Session 5: Nutrition science and bioactive compounds
6. Session 6: New approaches to food analysis
7. Session 7: Food allergens
8. Session 8: Nutrition and immunology
9. Session 9: Molecular biotechnology for the benefit of consumers
10. Session 10: New functional foods
11. Session 11: Health effects of food
12. List of poster presentations
P 2.20. Fructan from *Bacillus sp. NS032* - preparation, characterization and antioxidant activities *in vitro*

B. Kekež1, M. Lješević1, J. Stefanović2, G. Gojgić-Cvijović2, D. Jakovljević2, V. Beškoski1, M.M. Vrvić1,2

1Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia
2ICHTM - Department of Chemistry, University of Belgrade, Njegoševa 12, P.O. Box 473, 11001 Belgrade, Serbia (brankakekez@yahoo.com.uk)

Microbial polysaccharides (MPS) are characterized by high structural diversity leading to their numerous applications. The economic significance of these polysaccharides is reflected in the fact that some of these polymers are now widely accepted products of biotechnology with applications in various fields: food industry, cosmetics, agriculture, pharmacy and medicine.

In recent years, much attention was given to bacterial exopolysaccharide levan, due to specific physical and chemical properties and non-toxicity, for which it could be applied as a stabilizer, emulsifier, flavor and fragrance carrier, prebiotic, antioxidant and antitumor agent, for encapsulation, etc [1].

The aim of this work was to study the structural characteristics of a exopolysaccharide produced by *Bacillus sp. NS032*, identified as *B. licheniformis* [2]. The synthesized MPS was characterized by chemical methods, planar chromatography, elemental analysis, FTIR and NMR spectroscopy. Apart from that, the antioxidant activities *in vitro* of this polysaccharide were investigated.

Based on the results the main structural characteristic of this polymer was proposed. It was concluded that the polysaccharide produced by the *B. licheniformis* strain is homopolymer fructan having backbone of D-fructofuranose units connected by β-(2,6)-glycosidic linkages. The side groups were fructose residues linked to the main chain likely through β-(2,1)-glycosidic linkages. The results showed that investigated MPS belongs to levan-type polysaccharide. The antioxidant activities (chelating ability, reducing power) *in vitro* showed moderate values compared to the commercial antioxidants.
Fructan from \textit{Bacillus sp. NS032} - preparation, characterization and antioxidant activities \textit{in vitro}

\textbf{B. Kekez}1, M. Lješević1, J. Stefanović1, G. Gojgić-Cvijović1, D. Jakovljević1, V. Beškoski1, M.M. Vrvić1,2

1Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia
2ICHTM - Department of Chemistry, University of Belgrade, Njegoševa 12, P.O. Box 473, 11001 Belgrade, Serbia (branka.Kekez@yahoo.co.uk)

\textbf{Introduction}

Microbial polysaccharides (MPS) are characterized by high structural diversity leading to their numerous applications. Many of these polymers are now widely accepted products of biotechnology with applications in various fields: food industry, cosmetics, agriculture, pharmacy and medicine. In recent years, much attention was given to bacterial exopolysaccharide levan, due to specific physical and chemical properties and non-toxicity, for which it could be applied as a stabilizer, emulsifier, flavor and fragrance carrier, prebiotic, antioxidant and antitumor agent, for encapsulation, etc.

The aim of this work was to investigate the structural characteristics of a exopolysaccharide produced by \textit{Bacillus sp. NS032}. The synthesized MPS was characterized by chemical methods, planar chromatography, elemental analysis, FTIR and NMR spectroscopy. Apart from that, the antioxidant activities in vitro of this polysaccharide were investigated.

\textbf{Experimental}

- Exopolysaccharide was produced by \textit{Bacillus sp. NS032} [1]. The microorganism was cultivated in sucrose broth for 10 days at 28 °C. After removal of biomass the crude polysaccharide was isolated by precipitation with ethanol. After treatments with Dnase, Rnase and Pronase and dialysis, purified polysaccharide was precipitated by acetone and liophylised.
- The elemental analysis data were obtained using the Vario EL III device (GmbH Hanau Instruments, Germany).
- Monomer components were determined by planar chromatography of the acid hydrolyzate of the glycan.
- FT-IR spectrum of pure polysaccharide was obtained using Thermo Nicolet 6700 FT-IR Spectrophotometer in ATR mode.
- NMR spectra of purified MPS were recorded on a Varian Gemini 2000 (200 MHz (1H), and 50.3 MHz (13C).
- Antioxidant activities of crude and purified polysaccharide were evaluated using two different \textit{in vitro} assays systems.

\textbf{Results}

- Planar chromatography of the hydrolyzed crude polysaccharide showed two main components, fructose and glucose, while in hydrolysate of purified polymer was detected only D-fructose, which indicated that investigated polymer was fructan.
- Results of elemental analysis showed that C and H content corresponded to polysaccharide molecules.
- The FT-IR spectrum of the purified polysaccharide (Fig.1) showed absorption peaks between 1128 cm\(^{-1}\) and 1014 cm\(^{-1}\) attributed to \(\nu_{\text{va}}\) (C-O-C) and \(\nu_{\text{va}}\) (C-O-H), the bands in the range of 1200-1500 cm\(^{-1}\) assigned to \(\delta\) (C-H), the peak at 1645 cm\(^{-1}\) was due to bound water. Strong, wide band at 3000–3500 cm\(^{-1}\) and band at 2936 cm\(^{-1}\) was from \(\nu_{\text{va}}\) (OH) and \(\nu_{\text{va}}\) (C-H), respectively. Absorption band at 891 cm\(^{-1}\) is specific for the \(\beta\)-configuration of the glycosidic linkages.
- The 13C NMR spectrum (Fig.2) of purified fructan showed signals at 106.98 ppm, 106.393 ppm and 106.284 ppm which corresponded to anomeric \(\beta\)-C-2 atoms of D-fructofuranosil residues. These signals were from C-2 atoms of linear (2→6)-linked fructofuranose, and from C-6 atoms of branched (2→6)-linked fructofuranose. Chemical shift at 83.08 ppm was from C-5 atoms of frukfuranosil residues.
- The 13C NMR spectrum (Fig.2) of purified fructan showed signals at 106.98 ppm, 106.393 ppm and 106.284 ppm which corresponded to anomeric \(\beta\)-C-2 atoms of D-fructofuranosil residues. These signals were from C-2 atoms of linear (2→6)-linked fructofuranose, and from C-6 atoms of branched (2→6)-linked fructofuranose. Chemical shift at 83.08 ppm was from C-5 atoms of \(\beta\)-D-frukturanosil residues.
- The antioxidant activities of crude and purified polysaccharide were tested using \textit{in vitro} assay systems: ferric-reducing power and chelating activities. In the reducing power assay results showed (Fig.3) that crude and purified polysaccharide did not have antioxidant activity, as was expected based on literary data [3,4]. In the Fe^{2+} chelating assay (Fig. 4), the Fe^{2+} chelating effect of crude and purified MPS were concentration related.

\textbf{Conclusion}

- The polysaccharide produced by the \textit{Bacillus sp. NS032} is homopolymer, fructan, with the backbone chain consisting of (2,6) linked \(\beta\)-D-fructofuranose units with side groups linked to the main chain likely through \(\beta\)-(2,1)-glycosidic linkages.
- Investigated MPS belongs to levan-type polysaccharide.
- The antioxidant activities (chelating ability, reducing power) \textit{in vitro} showed moderate or low values of the crude and purified polysaccharides, compared to the commercial antioxidants.

\textbf{Acknowledgement}

FCUB ERA FP7 and Serbian Ministry of Education, Science and Technological Development (Project no. III 43004)

\textbf{References}