Belgrade Food International Conference

Food, health and well being

Belgrade, 26th to 28th November 2012.
Belgrade Food International Conference

Prof. Dr. Marija Gavrović-Jankulović, President of the Belgrade Food International Conference

Scientific Committee:

Prof. Dr. Tanja Ćirković Veličković (President)
Dr. Estelle Bonnin
Dr. Ivan Minkov
Dr. Guro Gafvelin
Dr. Theodore Sotiroudis
Dr. Arnd Petersen
Dr. Joost Smit
Dr. Marija Glibetić
Prof. Dr. Zoran Vujčić
Prof. Dr. Živoslav Tešić
Prof. Dr. Miroslav Vrvić

Organizing Committee:

Dr. Dragana Stanić-Vučinić (President)
Dr. Nenad Milosavić
Milica Grozdanović
Jana Ognjenović
Marija Stojadinović
Jelena Radosavljević
Jasna Nikolić
Content:

1. Session 1: Enzymes in food processing
2. Session 2: Wastes and biomass valorization
3. Session 3: Supplements, micronutrients and food additives
4. Session 4: Food antioxidants
5. Session 5: Nutrition science and bioactive compounds
6. Session 6: New approaches to food analysis
7. Session 7: Food allergens
8. Session 8: Nutrition and immunology
9. Session 9: Molecular biotechnology for the benefit of consumers
10. Session 10: New functional foods
11. Session 11: Health effects of food
12. List of poster presentations
P 2.17. Antioxidative properties of infant formulas against hydroxyl radical production in the Fenton reaction

N. Lugonja¹, O.B. Laugier¹, M.M.Vrvić¹,², S.Miletić¹, S. D. Spasić¹

¹Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11001 Belgrade, Njegoševa 12, P.O.Box 473, Serbia
²Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Studentski trg 12-16, P.O.Box 51, Serbia

Electron paramagnetic resonance (EPR) spin-trapping spectroscopy was used to compare the antioxidative capacities of commercial infant formulas against hydroxyl radical production in the Fenton reaction. Infant formula used in our experiments was Impamil-Serbia: Impamil 1, Impamil 2, Impamil 3, Impamil Pre, Impamil FL, and Danone-Holland: Bebelac and Milupa-Germany: Aptamil marked as samples 1-7. All formulas were prepared by dissolving 15 g of dry powder in 90 mL water (150 g/L). EPR spectra were recorded using a Varian E104-A EPR spectrometer operating at the X-band (9.572 GHz) with the following settings: modulation amplitude: 0.2 mT; modulation frequency: 100 kHz; microwave power: 20 mW; time constant: 32 ms; scanning time: 4 min. The temperature in the cavity was controlled at 293 °K. Spin-trap BMPO (5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide) was purchased from Enzo Life Sciences International (Plymouth Meeting, PA, USA). Recordings were performed using EW software (Scientific Software, Bloomington, IL, US). The Fenton reaction was performed by adding Fe²⁺ (FeSO₄ Sigma-Aldrich) and H₂O₂ (Reanal, Budapest, Hungary) at final concentrations of 0.6 mM and 3 mM, respectively, followed after the addition of BMPO (10 mM). The samples were drawn into 10 cm long gas-permeable Teflon tubes (wall thickness: 0.025 mm; internal diameter: 0.6 mm; Zeus industries, Raritan, NJ, USA) in order to maintain constant pO₂ levels. Measurements were performed using quartz capillaries in which the Teflon tubes were placed. Recordings were conducted 2 min after the start of the reaction. Spectral simulations of each spectrum were performed using the WINEPR SimFonia computer program (Bruker Analytische Messtechnik GmbH, Darmstadt, Germany). In all samples the generation of hydroxyl radical led to the formation of carbon-centred and ascorbyl radicals. In samples 1-5, the level of carbon-centred radical was significantly higher than in samples 6 and 7 but those samples have higher signal of ascorbyl radical in comparison with other samples. In addition to hydroxyl radical scavenging, Fenton reaction may be hampered by the removal of redox active (inappropriately chelated) iron. That fact limit amount of ascorbate which may be added in formulas and other possible mechanisms for increased antioxidative capacity are discussed.
Antioxidative properties of infant formulas against hydroxyl radical production in the Fenton reaction

N. Lugonja¹, O.B. Laugier¹, M.M. Vrvić¹, 2, S. Miletić¹, S. D. Spasić¹

¹Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia
²Faculty of Chemistry, University of Belgrade, Studentski trg 16, Belgrade, Serbia

Electron paramagnetic resonance (EPR) spin-trapping spectroscopy was used to compare the antioxidative capacities of commercial infant formulas against hydroxyl radical production in the Fenton reaction. Infant formula used in our experiments was Impamil-Serbia: Impamil 1, Impamil 2, Impamil 3, Impamil PRE, Impamil FL, and Danone-Holland: Bebelac and Milupa-Germany: Aptamil marked as samples 1-7 (Table 1). All formulas were prepared by dissolving 15 g of dry powder in 90 ml water (36 g/L). EPR spectra were recorded using a Varian E104-A EPR spectrometer operating at the X-band (9.572 GHz) with the following settings: modulation amplitude: 0.2 mT; modulation frequency: 100 kHz; microwave power: 20 mW; time constant: 32 ms; scanning time: 4 min. The temperature in the cavity was controlled at 293K. Spin-trap BMPO (5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide) was purchased from Enzo Life Sciences International (Plymouth Meeting, PA, USA). Recordings were performed using EW software (Scientific Software, Bloomington, IL, USA). The Fenton reaction was performed by adding Fe²⁺ (FeSO₄ Sigma-Aldrich) and H₂O₂ (Renal, Budapest, Hungary) at final concentrations of 0.6 mM and 3 mM, respectively, followed after the addition of BMPO (10 mM). The samples were drawn into 10 cm long gas-permeable Teflon tubes (wall thickness: 0.025 mm; internal diameter: 0.6 mm; Zeus industries, Raritan, NJ, USA) in order to maintain constant pO2 levels. Measurements were performed using quartz capillaries in which the Teflon tubes were placed. Recordings were conducted 2 min after the start of the reaction. Spectral simulations of each spectrum were performed using the WINEPR SimFonia computer program (Bruker Analytische Messtechnik GmbH, Darmstadt, Germany). In all samples the generation of hydroxyl radical led to the formation of carbon-centred and ascorbyl radicals. In samples 1-5, the level of carbon-centred radical was significantly higher than in samples 6 and 7 but those samples have higher signal of ascorbyl radical in comparison with other samples. In addition to hydroxyl radical scavenging, Fenton reaction may be hampered by the removal of redox active (inappropriately chelated) iron. That fact limit amount of ascorbate which may be added in Formulas and other possible mechanisms for increased antioxidative capacity are discussed (Figure 1).

Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Formula Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Impamil 1-Serbia</td>
</tr>
<tr>
<td>2</td>
<td>Impamil 2 - infant formula for 0-12 month old babies</td>
</tr>
<tr>
<td>3</td>
<td>Impamil 3 - infant formula for 6-12 month old babies</td>
</tr>
<tr>
<td>4</td>
<td>Impamil PRE - infant formula for premature babies</td>
</tr>
<tr>
<td>5</td>
<td>Impamil FL - infant formula for 0-6 month old babies</td>
</tr>
<tr>
<td>6</td>
<td>Bebelac (Danone, Holland) - infant formula for 0-6 month old babies</td>
</tr>
<tr>
<td>7</td>
<td>Aptamil (Milupa, Germany) - infant formula for 0-6 month old babies</td>
</tr>
</tbody>
</table>

Figure 1.

References:

Acknowledgements: This work was supported by the Ministry of Education Science of the Republic of Serbia, Grants #43004.