19th International Mass Spectrometry Conference

Kyoto International Conference Center Saturday 15th September – Friday 21st September 2012

Thursday, 20th September

Analysis of perfluorinated compounds in PTh-162 13:30 - 14:40 sediment samples from wastewater canal of Pancevo industrial area. Serbia

Vladimir P Beskoski¹, Shuusuke Takemine², Takeshi Nakano³, Latinka Slavkovic-Beskoski⁴, Gordana Gojgic-Cvijovic¹, Mila Ilic¹, Srdjan Miletic¹, Miroslav M Vrvic^{1,5}

¹Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia, ²Hyogo Prefectural Institute of Environmental Science, Kobe, Japan, ³Center for Advanced Science and Innovation, Osaka University, Japan, ⁴Institute of Nuclear Sciences, ⁵Faculty of Chemistry, University of Belgrade, Serbia

PTh-163 Study of On-site sampling method for Dioxin in water with high concentrations 11:10 - 12:20 of suspended solids.

Takeshi Enomoto¹, Miho Okimoto¹, Chuanpit Boonyoy², Areerat Jaksakul², Ruchaya Boonyatumanond², Genta Takahashi⁵, Kenji Tawara⁵, Tohru Matsumura³, Takeshi Nakano⁴

¹JEOL Ltd., Tokyo, Japan, ²ERTC, Pathumthani, Thailand, ³IDEA Consultant Inc.,Shizuoka,Japan, 4Osaka University, Osaka, Japan, 5Hyogo Environmental Advancement Association, Kobe, Japan

Multi-residue analysis of pesticides in **PTh-164** animal and fishery products, and their 13:30 - 14:40 processed foods by dual-column GC-MS/MS

Eiji Ueno, Haruka Ohno, Minae Watanabe, Harumi Oshima, Eiichi Mikami

Aichi Prefectural Institute of Public Health, Nagoya, Japan

PTh-165 Simultaneous analysis of cationic, 11:10 – 12:20 anionic and neutral surfactants from different matrices using LCMS/MS.

Rashi Kochhar¹, Shruti Raju¹, Deepti Bhandarkar¹, Bhairavi Saraf¹, Shailendra Rane¹, Jitendra Kelkar¹, Ajit Datar¹, Zhaoqi Zhan²

¹Shimadzu Analytical (India) Pvt.Ltd., Mumbai, India, ²Shimadzu Asia Pacific Pte.Ltd.

Food safety

Detection of Melamine in Human Renal **PTh-166** 13:30 - 14:40 Uric Acid Stone by Matrix-Assisted Laser **Desorption / Ionization Time-Of-Flight** Mass Spectrometry (MALDI-TOF MS)

Chia-Fang Wu¹, Chia-Chu Liu^{2,3,4,5}, Jentaie Shiea⁶, Yi-Tzu Cho⁷, Yii-Her Chou^{2,3}, Bai-Hsiun Chen⁸, Chao-Yi Chien¹, Shu-Pin Huang^{2,3}, Wen-Jeng Wu^{2,3,9}, Jung-Tsung Shen⁹, Mei-Yu Chang⁹, Chun-Hsiung Huang^{2,3}, Ai-Wen Chang², Ming-Tsang $\widetilde{W}u^{*1.4,10,11}$

¹Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan, ²Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ³Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ⁴Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ⁵Pingtung Hospital, Department of Health, Executive Yuan, Pingtung, Taiwan, ⁶Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, ⁷Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan, ⁸Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ⁹Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan, ¹⁰Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ¹¹Center of Environmental and Occupational Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan

Urinary oxidative metabolites of di(2-PTh-167 11:10 - 12:20 ethylhexyl)phthalate can predict the daily intake of phthalate-tainted foods in Taiwanese children

I-Chen Wu¹, Chia-Fang Wu², Jentaie Shiea³, Bai-Hsiun Chen⁴, Jiunn-Ren Wu⁵, Ming-Tsang Wu^{*2,6,7}

¹Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ²Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan, ³Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, ⁴Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ⁵Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ⁶Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ⁷Center of Environmental and Occupational Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan

LC-MS analysis of neonicotinoid **PTh-168** 13:30 - 14:40 insecticides in the crops using a novel selective solid-phase extractant having dipole type functional group

Toshio Miwa¹, Isao Saito¹, Atsushi Yamamoto¹, Yoshinori Inoue², Mitsuru Saito² ¹Chubu University, Aichi, Japan, ²Nippon Filcon Co., Tokyo, Japan

Studies on Residual Characteristics of PTh-169 11:10 – 12:20 Growth Regulator 6-BA in Bean Sprout

Wan-Hee Seo, Young-Mo Jeong, Soon-Kil Cho, Bong-Suk Oh Jeonnam Provincial Office, National Agricultural Products Quality Management Service, MIFAFF, Korea

PTh-170 Improvement of Determination Method 13:30 – 14:40 for Pesticide Residues in Bean Sprout

Soon-Kil Cho, Wan-Hee Seo, Young-Mo Jeong, Ji-Mi Cho Jeonnam Provincial Office, National Agricultural Products Quality Management Service, MIFAFF, Korea

PTh-171 Screening of five mycotoxins by using 11:10 - 12:20 immunoaffinity column and HPLCorbitrapMS in processed foods

Dong Sik Jeong, Seung Lim Baek, Dae Hyun Kim, Jong Ho Lee, Cheong-Tae Kim

NONGSHIM Co., LTD., Seoul, South Korea

PTh-172 Simultaneous determination of 13:30 - 14:40 melamine and its analogues in various processed foods using LTQ-orbitrap HRMS

JONG HO LEE, DONGSIK JEONG, DAE HYUN KIM. CHEONG-TAE KIM

NONGSHIM Co., Ltd., Seoul, Korea

PTh-174 Determination of DNA adducts 13:30 - 14:40 originating from methyleugenol using isotope-dilution UPLC-ESI-MS/MS

Wolfram Engst¹, Kristin Herrmann¹, Fabian Schumacher¹, Simone Florian¹, Klaus E Appel², Hansruedi Glatt¹ ¹German Institute of Human Nutrition Potsdam- Rehbrücke, Nuthetal, Germany, ²Federal Institute for Risk Assessment, Berlin, Germany

Poster Session

Thursday, 20th September

Core Time : 11:10 - 12:20 (Odd number), 13:30 - 14:40 (Even number)

Session 40: Environment II

PTh-162 Analysis of perfluorinated compounds in sediment samples from wastewater canal of Pancevo industrial area, Serbia

<u>Vladimir P Beskoski</u>¹, Shuusuke Takemine², Takeshi Nakano³, Latinka Slavkovic-Beskoski⁴, Gordana Gojgic-Cvijovic¹, Mila Ilic¹, Srdjan Miletic¹, Miroslav M Vrvic^{1,5}

¹Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia, ²Hyogo Prefectural Institute of Environmental Science, Kobe, Japan, ³Center for Advanced Science and Innovation, Osaka University, Japan, ⁴Institute of Nuclear Sciences, ⁵Faculty of Chemistry, University of Belgrade, Serbia

Keywords:

PFOA, PFOS, Industrial wastewater canal, Sediment, Danube River

Novel aspects:

This is the first report of presence of PFCs compounds in the sediments from Serbia. Compared to other reports, high levels of PFOA and PFOS were found.

Abstract:

Perfluorinated compounds (PFCs) are chemicals that do not occur naturally, but have been widely used in chemical production for some time. They are globally distributed, environmentally persistent, bioaccumulative, and potentially harmful. Perfluorooctansulfonate (PFOS) and perfluorooctanoate (PFOA) are the two PFCs most commonly used and found in the environment. Together with perfluorohexane sulfonate (PFHxS) these compounds are widely employed in different industrial processes such as in protective coatings.

The wastewater canal (WWC) Vojlovica was built in 1962 to collect the wastewater discharges from the industrial complex of the city of Pancevo in Serbia. Industrial complex consist of a petrochemical factory (HIP Petrohemija), an oil refinery (NIS Rafinerija, Pancevo) and chemical fertilizers factory (HIP Azotara). The canal is artificial with no natural flows, about 2 km long, around 70 m wide and directly connected to the Danube River. The water depth is around 12 m. The environment surrounding the canal has been strongly affected for a long time by the presence of the industrial complex. Additionally heavy destruction during NATO bombing events in 1999 resulted in contamination of air, soil, groundwater and the WWC itself.

In total, 4 sediment samples from WWC were collected. Surface sediments layer of 15 cm were taken by a Van Veen Grab sampler, transported in glass jars and stored in the laboratory at 4 °C. For comparative purposes, the same type of sample were also taken from the navigation canal flowing parallel to WWC but not receiving any direct discharge of industrial wastewaters. Sampling sites are listed below :

No 1 - navigation canal ;

No 2 - at the confluence of WWC with the Danube River, downstream from the industrial area and effluents :

No 3 - downstream from the fertilizer factory outlet (first effluent);

No 4 - downstream from the petrochemical plant (second effluent);

No 5 - downstream from the oil refinery outlet (third effluent) .

Sediment sample was extracted with methanol. MPFAC-MXA as mass-labeled surrogates was spiked into the sample. The sample was extracted with SPE. The elution was concentrated and labeled ¹³C₈PFOA was added as syringe spike. The each final solution was analyzed by liquid chromatography (LC) -tandem mass spectrometer (MS/MS) using Xevo TQ (Waters) coupled with ACQUITY UPLC (Waters) .

Concentrations of PFCs were determined as follows :

No 1 : 68, 230 and 230 ng/kg-dry of PFOA, PFHxS and PFOS, respectively.

No 2 : 80 and 2100 ng/kg-dry of PFOA and PFOS, respectively.

No 3 : 170 and 5300 ng/kg-dry of PFHxS and PFOS, respectively.

No 4 : 130, 170, and 5700 ng/kg-dry of PFOA, PFHxA, and PFOS, respectively.

No 5 : 76, 66 and 420 ng/kg-dry of PFOA, PFHxA, and PFOS, respectively.

Concentrations of PFOS in the samples No 3 and No 4 are 3-3.2 times higher compared with sea sediment in Tokyo bay¹⁾. PFOA and PFOS concentrations from WWC were from two to twenty fold higher comparing to sediment samples taken from Roter Main river (Germany) which receives treated waste waters of industrial, commercial and domestic origin from municipal wastewater treatment plant²⁾. Comparing to upstream Danube River bank sediment samples³⁾ PFOS from the WWC samples were from two to six fold higher.

This is the first study and report of presence of PFCs compounds in the samples from Serbia. Most of the PFCs are released from fertilizer factory and petrochemical plant outlets, while oil refinery outlet mostly contribute to petroleum pollution. The exact origin of PFCs cannot be established from one study but one of the reasons for presence of these compounds might be their usage as components in pipes, fittings and wiring insulations.

- Zushi Y. et al Environmental pollution 158, 756-763 (2010)
 Becker, A.M et al Environmental Pollution 156, 818-820 (2008)
- 3) Clara, M.et al Water Research 43, 4760-4768 (2010)