19th International Mass Spectrometry Conference

PROGRAMME

IMSC2012
KYOTO

Kyoto International Conference Center
Saturday 15th September – Friday 21st September 2012
Thursday, 20th September

PTh-162 13:30 – 14:40
Analysis of perfluorinated compounds in sediment samples from wastewater canal of Pančevo industrial area, Serbia
Vladimir P Besković1, Shuusuke Takenine2, Takeshi Nakano3, Latinka Slavkovic-Besković4, Gordana Gojcic-Cvijovic1, Mila Ilic1, Srdjan M Mivic1,5
1Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia, 2Hyogo Prefectural Institute of Environmental Science, Kobe, Japan, 3Center for Advanced Science and Innovation, Osaka University, Japan, 4Institute of Nuclear Sciences, 5Faculty of Chemistry, University of Belgrade, Serbia

PTh-163 11:10 – 12:20
Study of On-site sampling method for Dioxin in water with high concentrations of suspended solids.
Takeshi Enomoto1, Miho Okimoto1, Chunpit Boonyoy2, Areerat Jaksakul3, Ruchaya Boonyatanumond4, Gentakakashhi5, Kenji Tawara1, Tohru Matsumura6, Takeshi Nakano4
1JIO Ltd., Tokyo, Japan, 2ERTC, Pathumthani, Thailand, 3IDEA Consultant Inc., Shizuka, Japan, 4Osaka University, Osaka, Japan, 5Hyogo Environmental Development Association, Kobe, Japan

PTh-164 13:30 – 14:40
Multi-residue analysis of pesticides in animal and fishery products, and their processed foods by dual-column GC-MS/MS
Eiji Ueno, Haruka Ohno, Minae Watanabe, Harumi Oshima, Eiichi Mikami
Aichi Prefectural Institute of Public Health, Nagoya, Japan

PTh-165 11:10 – 12:20
Simultaneous analysis of cationic, anionic and neutral surfactants from different matrices using LC/MS/MS.
Rashi Kochhar1, Shruti Raju2, Deepthi Bhandarkar3, Bhairavi Saraf2, Shailendra Rane4, Jitendra Kelkar5, Ajit Datar1, Zhaocui Zhan2
1Shimadzu Analytical (India) Pvt. Ltd., Mumbai, India, 2Shimadzu Asia Pacific Pte Ltd.

PTh-167 11:10 – 12:20
Urinary oxidative metabolites of di(2-ethylhexyl) phthalate can predict the daily intake of phthalate-tainted foods in Taiwanese children
J-Chen Wu1, Chia-Fang Wu2, Jentaie Shiea3, Bai-Hsiun Chen4, Jyun-Wen Wu5, Ming-Tsang Wu6,7
1Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 2Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan, 3Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 4Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 5Department of Medical Research, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan, 6Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 7Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 8Center of Environmental and Occupational Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan

PTh-168 13:30 – 14:40
LC-MS analysis of neonicotinoid insecticides in the crops using a novel selective solid-phase extractant having dipole type functional group
Toshio Miwa1, Isao Saito1, Atsushi Yamamoto1, Yoshinori Inoue1, Mitsuru Saito2
1Chubu University, Aichi, Japan, 2Nippon Ficon Co., Tokyo, Japan

PTh-169 11:10 – 12:20
Studies on Residual Characteristics of Growth Regulator 6-BA in Bean Sprout
Wan-Hee Seo, Young-Mo Jeong, Soon-Kil Cho, Bong-Suk Oh
Jeonnam Provincial Office, National Agricultural Products Quality Management Service, MIAFF, Korea

PTh-170 13:30 – 14:40
Improvement of Determination Method for Pesticide Residues in Bean Sprout
Soon-Kil Cho, Wan-Hee Seo, Young-Mo Jeong, Ji-Mi Cho
Jeonnam Provincial Office, National Agricultural Products Quality Management Service, MIAFF, Korea

PTh-171 11:10 – 12:20
Screening of five mycotoxins by using immunoaffinity column and HPLC-orbitrapMS in processed foods
Dong Sik Jeong, Seung Lim Baek, Dae Hyun Kim, Jong Ho Lee, Cheong-Tae Kim
NONGSHIM Co., LTD., Seoul, South Korea

PTh-172 13:30 – 14:40
Simultaneous determination of melamine and its analogues in various processed foods using LTQ-orbitrap HRMS
JONG HO LEE, DONGSICK JEONG, DAE HYUN KIM, CHEONG-TAE KIM
NONGSHIM Co., Ltd., Seoul, Korea

PTh-174 13:30 – 14:40
Determination of DNA adducts originating from methylenegurol using isotope-dilution UPLC-ESI-MS/MS
Wolfram Engst1, Kristin Herrmann1, Fabian Schumacher1, Simone Florian1, Klaus E Appel1, Hansruedi Glatt1
1German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, 2Federal Institute for Risk Assessment, Berlin, Germany

Food safety
PTh-166 13:30 – 14:40
Detection of Melamine in Human Renal Uric Acid Stone by Matrix-Assisted Laser Desorption / Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)
Chia-Fang Wu1, Chia-Chu Liu2,4,5,6,7, Jentaie Shiea8, Yi-Tzu Cho9, Yi-Her Chou10, Bai-Hsiun Chen11, Chao-Yi Chien11, Shu-Pin Huang11,12, Wen-Jeng Wu11,13, Jung-Tsing Shen11, Mei-Yu Chang8, Chun-Hsiung Huang2,1,14,15, Ai-Wen Chang2, Ming-Tsang Wu6,7,14,15
1Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan, 2Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, 3Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, 4Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, 5Piuling Hospital, Department of Health, Executive Yuan, Piuling, Taiwan, 6Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 7Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan, 8Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 9Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan, 10Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 11Center of Environmental and Occupational Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan

114
Analysis of perfluorinated compounds in sediment samples from wastewater canal of Pancevo industrial area, Serbia

Vladimir P Beskoski¹, Shuusuke Takekine², Takeshi Nakano³, Latinka Slavkovic-Beskoski⁴, Gordana Gojgic-Cvijovic⁵, Mila Ilic¹, Srdjan Miletic¹, Miroslav M Vrvice¹,²

¹Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia, ²Hyogo Prefectural Institute of Environmental Science, Kobe, Japan, ³Center for Advanced Science and Innovation, Osaka University, Japan, ⁴Institute of Nuclear Sciences, ⁵Faculty of Chemistry, University of Belgrade, Serbia

Keywords: PFOA, PFOS, Industrial wastewater canal, Sediment, Danube River

Novel aspects: This is the first report of presence of PFCs compounds in the sediments from Serbia. Compared to other reports, high levels of PFOA and PFOS were found.

Abstract: Perfluorinated compounds (PFCs) are chemicals that do not occur naturally, but have been widely used in chemical production for some time. They are globally distributed, environmentally persistent, bioaccumulative, and potentially harmful. Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are the two PFCs most commonly used and found in the environment. Together with perfluorohexane sulfonate (PFHxS) these compounds are widely employed in different industrial processes such as in protective coatings. The wastewater canal (WWC) Vojvica was built in 1962 to collect the wastewater discharges from the industrial complex of the city of Pancevo in Serbia. Industrial complex consist of a petrochemical factory (HIP Petrohemija), an oil refinery (NIS Rafinerija, Pancevo) and chemical fertilizers factory (HIP Azotara). The canal is artificial with no natural flows, about 2 km long, around 70 m wide and directly connected to the Danube River. The water depth is around 12 m. The environment surrounding the canal has been strongly affected for a long time by the presence of the industrial complex. Additionally heavy destruction during NATO bombing events in 1999 resulted in contamination of air, soil, groundwater and the WWC itself.

In total, 4 sediment samples from WWC were collected. Surface sediments layer of 15 cm were taken by a Van Veen Grab sampler, transported in glass jars and stored in the laboratory at 4 °C. For comparative purposes, the same type of sample were also taken from the navigation canal flowing parallel to WWC but not receiving any direct discharge of industrial wastewaters.

Sampling sites are listed below:
No 1 - navigation canal;
No 2 - at the confluence of WWC with the Danube River, downstream from the industrial area and effluents;
No 3 - downstream from the fertilizer factory outlet (first effluent);
No 4 - downstream from the petrochemical plant (second effluent);
No 5 - downstream from the oil refinery outlet (third effluent).

Sediment sample was extracted with methanol. MPFAC-MXA as mass-labeled surrogates was spiked into the sample. The sample was extracted with SPE. The elution was concentrated and labeled 13CpFOA was added as syringe spike. The each final solution was analyzed by liquid chromatography (LC) -tandem mass spectrometer (MS/MS) using Xevo TQ (Waters) coupled with ACQUITY UPLC (Waters).

Concentrations of PFCs were determined as follows:
No 1: 68, 230 and 230 ng/kg-dry of PFOA, PFHxS and PFOS, respectively.
No 2: 80 and 2100 ng/kg-dry of PFOA and PFOS, respectively.
No 3: 170 and 5300 ng/kg-dry of PFHxS and PFOS, respectively.
No 4: 130, 170, and 5700 ng/kg-dry of PFOA, PFHxS and PFOS, respectively.
No 5: 76, 66 and 420 ng/kg-dry of PFOA, PFHxS and PFOS, respectively.

Concentrations of PFOS in the samples No 3 and No 4 are 3-3.2 times higher compared with sea sediment in Tokyo bay. PFOA and PFOS concentrations from WWC were from two to twenty fold higher comparing to sediment samples taken from Roter Main river (Germany) which receives treated waste waters of industrial, commercial and domestic origin from municipal wastewater treatment plant. Comparing to upstream Danube River bank sediment samples PFOS from the WWC samples were from two to six fold higher.

This is the first study and report of presence of PFCs compounds in the samples from Serbia. Most of the PFCs are released from fertilizer factory and petrochemical plant outlets, while oil refinery outlet mostly contribute to petroleum pollution. The exact origin of PFCs cannot be established from one study but one of the reasons for presence of these compounds might be their usage as components in pipes, fittings and wiring insulations.
1) Zushi Y. et al *Environmental pollution* 158, 756-763 (2010)
2) Becker, AJM et al *Environmental Pollution* 156, 818-820 (2008)