International Symposium of

24 - 26 February 2012 Polat Renaissance • İstanbul

PROGRAM & ABSTRACT BOOK

www.is3p.org

PROGRAM BOOK

INTERNATIONAL SYMPOSIUM OF PROBIOTICS & PREBIOTICS IN PEDIATRICS IS3P - 2012

24-26 February 2012 Polat Renaissance Hotel

ISTANBUL-TURKIYE

PROBIOTICS & PREBIOTICS IN PEDIATRICS

ЧO

ORGANIZING COMMITTEE

Ener Cagri Dinleyici, M.D.

Metehan Ozen, M.D.

Yvan Vandenplas, M.D.

INTERNATIONAL SCIENTIFIC FACULTY

Jesper Brok Nathalie Delzenne Martin Floch Ruggiero Francavilla Stefano Guandalini Iva Hojsak Flavia Indrio Erika Isolauri Sanja Kolacek Rocio Martin Lynne McFarland Guido Moro Stephen Olmstead Bruno Pot Joseph Rafter **Gregor Reid** Silvia Salvatore Annamaria Staiano Hania Szajewska **Merit Tabbers** Yvan Vandenplas Allan Walker Zvi Weizman

LOCAL SCIENTIFIC COMMITTEE

Ateş Kara Benal Büyükgebiz Buket Dalgıç Ergin Ciftci Fügen Çullu Çokuğraş Haluk Çokuğraş Murat Yurdakök Raşit Vural Yağcı Tanju Özkan Tarkan Karakan Turgay Coşkun Zafer Kurugol

CORRESPONDENCE

IS3P SCIENTIFIC CORRESPONDENCE

Ener Cagri DINLEYICI, M.D.

Associate Professor in Pediatrics Eskisehir Osmangazi University Faculty of Medicine Department of Pediatrics Eskisehir Turkiye TR-26480 E-mail : timboothtr@yahoo.com

IS3P ORGANIZING SECRETARIAT

Address :		Turan Guneș Bulvari 5. Cadde INO: 13				
		06550 Yıldız, Çankaya, Ankara-TURKIYE				
Phone	:	+90 312 440 50 11				
Fax	:	+90 312 441 45 62				
E-mail	:	is3p@serenas.com.tr				
Web	:	www.is3p.org				

POSTER PRESENTATIONS

PP - 01

EFFECTS OF PROBIOTICS AND TISSUE PLASMINOGEN ACTIVATOR IN EXPERIMENTALLY INDUCED PERITONITIS

Başak Erginel¹, Tansu Salman², Lütfiye Öksüz³, Nezahat Gürler³, Feryal Gün², Alaaddin Çelik²

PP - 02

A SYNBIOTIC MIXTURE of scGOS/IcFOS AND BIFIDOBACTERIUM BREVE M-16V INCREASES FAECAL BIFIDOBACTERIA IN HEALTHY YOUNG CHILDREN

Pantipa Chatchatee¹, <u>Lahcene Rezaïki²</u>, Kaouther Ben Amor³, Pensri Kosuwon⁴, Mongkol Laoaraya⁵, Suwannee Uthaisengsuk⁶ and Jan Knol².

PP - 03

INHIBITORY EFFECTS OF Lactobacillus paracasei CNCM I-4034 SUPERNATANT ON Salmonella typhi-INDUCED INFLAMMATION IN HUMAN DENDRITIC CELLS

<u>Miriam Bermúdez-Brito</u>¹, Sergio I. Muñoz¹, Carolina Gómez-Llorente¹, Esther Matencio², María J. Bernal², Fernando Romero², Ángel Gil¹

PP - 04

BIFIDOGENIC EFFECT OF A FOLLOW-ON FORMULA SUPPLEMENTED WITH PREBIOTICS <u>N. M. Lugonja¹</u>, O. B. Laugier¹, S. D.Spasic¹, G. Dj. Gojgic-Cvijovic¹, and M.M. Vrvic^{1, 2}

PP - 05

ANTI-INFLAMMATORY ACTIVITIES OF LACTOBACILLI ISOLATED FROM INFANT FECES ON TUMOR NECROSIS FACTOR- α PRODUCTION

Boonyarut Ladda¹, Chantana Chimchang¹, Techin Triviroj² and Malai Taweechotipatr²

PP - 06

EFFECTS OF LACTIC ACID BACTERIA ISOLATED FROM INFANT FECES ON CANCER CELL PROLIFERATION

Juntana Chimchang¹, Boonyarut Ladda¹, Techin Triviroj², Benjamas Wongsatayanon² and Malai Taweechotipatr²

PP - 07

EFFICACY OF PROBIOTICS IN THE PREVENTION OF 5-FLUOROURACIL-INDUCED GASTROINTESTINAL MUCOSITIS AND DIARRHOEA IN MICE

Mei-Lien Cheng¹, Hung-Chang Lee², Chun-Yan Yeung², Jen-Shiu Chiang Chiau¹

PP - 08

ANTI-OBESITY EFFECTS OF PROBIOTICS ON DIET-INDUCED OBESE MICE

<u>Jen-Shiu Chiang Chiau</u>¹, Hung-Chang Lee², Chun-Yan Yeung², Ching-Wei Chang³, Chia-Yuan Liu³, Mei-Lien Cheng¹, Shou-Chuan Shih³

PP - 09

RANDOMISED CONTROLLED TRIAL OF PROPHYLACTIC SACCHAROMYCES BOULARDII VERSUS NYSTATIN FOR THE PREVENTION OF FUNGAL COLONISATION AND INVASIVE FUNGAL INFECTION IN VERY LOW BIRTH WEIGHT INFANTS

Gamze Demirel¹, Istemi Han Celik¹, Omer Erdeve¹, Sibel Saygan², Ugur Dilmen¹

BIFIDOGENIC EFFECT OF A FOLLOW-ON FORMULA SUPPLEMENTED WITH PREBIOTICS

<u>N. M. Lugonja¹</u>, O. B. Laugier¹, S. D.Spasic¹, G. Dj. Gojgic-Cvijovic¹, and M.M. Vrvic^{1, 2}

¹Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Njegoseva 12, Serbia ² Faculty of Chemistry, University of Belgrade, Belgrade, Serbia

Background and Aim: The bifidogenic effect is a stimulation of the growth and metabolism of bifidogenic bacteria in the gut. The aim of this study was to determine the bifidogenic effect of a follow-on formula supplemented with inulin and fructooligosaccharides (FOS), and compare it to that of human breast milk.

Methods: Healthy, term born babies 6-12 months old, were enrolled in 28-day study. Babies were divided in two groups according to the type of feeding: those receiving supplemented follow-on formula with inulin and FOS, and those receiving breast milk (control group). Fecal samples were obtained before and during meals at days 0, 14, 28, and used to determine the counts of bifidobacteria and lactobacilli, and biochemical parameters (pH and total organic acids).

Results: Before (day 0) and after 14 days of formula administration, the number of bifidobacteria and lactobacilli did not differ among the groups. At the end of the 28-day period, the number of bifidobacteria and lactobacilli significantly increased in formula fed versus breast milk fed group. There was a statistically significant difference between the groups in total bacterially generated organic acids, and no difference in stool pH.

Conclusions: This study showed that compared to breast milk, inulin and FOS supplemented follow-on formula stimulates bifidogenic effect in the baby's intestine during weaning period. We can conclude that tested follow-on formula with prebiotics has a similar effect on the baby's intestine as human breast milk.

Keywords: inulin, follow-on formula, bifidobacteria, lactobacilli

BIFIDOGENIC EFFECT OF A FOLLOW-ON FORMULA SUPPLEMENTED WITH PREBIOTICS

Nikoleta M. Lugonja*¹ Olga B. Laugier¹ Snežana D. Spasić¹ Gordana Dj. Gojgić-Cvijović¹ Miroslav M. Vrvić^{1,2} CH Constant of Generative Constants -Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia - 2-Faculty of Chemistry, University of Belgrade, Serbia

Background:

Human breast milk is considered the gold standard nutrition for babies. Mother's milk provides all the nutritive elements for normal growth and for baby's digestive conditions. Although human milk is the first choice for the newborn, milk substitutes play an indispensable role in baby's nutrition when breastfeeding is not possible, desirable or sufficient. Infant and follow-on milk formulas have been designed to provide babies with the required nutrients for optimal growth and development. At birth, many bacterial species gain access into the intestinal tract, but bifidobacteria gradually become established as the main bacteria, and predominate in the intestinal microflora of breast-fed babies. The bifidogenic effect is a stimulation of the growth and metabolism of bifidogenic bacteria in the gut.

Aim:

The aim of this study was to determine the bifidogenic effect of a follow-on formula supplemented with inulin and fructooligosaccharides (FOS), and compare it to that of human breast milk.

Material and methods:

Healthy, vaginally, term born babies 6-12 months old, were enrolled in 28-day study. Babies were divided in two groups according to the type of feeding: those receiving supplemented follow-on formula with inulin and FOS (FF group) and those receiving breast milk (BMF, control group). The follow-on formula group received an experimental full-term formula designed for babies 6 to 12 months old, and supplemented with inulin and FOS (4.0 g/L). Fecal samples were obtained before (D0) and during study at days 14 and 28 (D14, D28), and used to determine the counts of *Bifidobacterium sp.* and *Lactobacillus sp.*, and biochemical parameters (pH and total organic acids). Every day during the study, the weight and length of the babies, number of feeds, tolerance to offered meal (follow-on formula or breast milk), and stool frequency and consistency were recorded.

Results:

Before (day 0) and after 14 days of formula administration, the number of bifidobacteria and lactobacilli did not differ among the groups. At the end of the 28-day period, an intake of 4.0 g/L of inulin and FOS caused a significant increase (p<0.05) of Bifidobacteria sp. and Lactobacillus sp. in formula fed versus breast milk fed group. The bacterial counts are expressed as means ± 10° CFU/g feces (Table 1). There was a statistically significant difference between the groups in total bacterially generated organic acids (p<0.05) and no difference in stool pH during the study (Table 2). All babies exhibited normal growth during the study, within the normal framework for that period of life (age between 6-12 months). The intake of bottle formula with added inulin and FOS at 4.0 g/L was well tolerated by the infants. Stool frequency and consistency, and side effects did not differ among the two feeding groups during the study.

Conclusion:

This study showed that compared to breast milk, inulin and FOS supplemented follow-on formula stimulates bifidogenic effect in the baby's intestine during weaning period. It is concluded that inulin and FOS consumption in follow-on formula-fed infants after weaning positively affected the microbial composition of feces. We can conclude that tested follow-on formula with prebiotics has similar effect on the baby's intestine as human breast milk.

nikoleta@chem.bg.ac.rs

LEVELS OF BABY'S GUT COLONIZATION WITH BIFIDOBACTERIUM SP. AND LACTOBACILLUS SP. IN THE FF AND BMF GROUPS DURING THE STUDY

Table 1

	CFUx 108/g of feces in the following group					
Type of feeding	Follow-on formula with added inulin and FOS (FF)	Breastfeeding (BMF)	<i>p</i> *	F1**	F1group**	
Bifidobacterium				0.012	0.022	
DO	9.86±10.23	9.04±11.97	0.871			
D14	18.68±19.43	20.81±46.75	0.896			
D28	33.57±20.64	9.91±10.48	0.005			
Lactobacillus				0.003	0.022	
DO	12.21±12.40	14.95±21.05	0.727			
D14	18.03±21.35	16.60±18.14	0.874			
D28	60.24±30.23	16.79±12.70	0.001			

nge between the groups during the study, as the internal group factor (within subject factors – F1) of the difference t. ** F1 and F1 gr

BIOCHEMICAL DATA IN STOOLS FROM THE GROUPS OF THE BABIES ENROLLED IN THE STUDY (GIVEN AS MEAN ± SD)

Type of feeding	Follow-on formula with added inulin and FOS (FF)	Breastfeeding (BMF)	<i>p</i> *	F1**	F1group**
pН				0.218	0.171
DO	7.63±0.38	6.98±1.08	0.090		
D14	7.32±0.45	6.93±0.84	0.217		
D28	6.99±0.78	6.98±0.94	0.961		
ΤΟΑ				0.045	0.021
DO	0.0032±0.0022	0.0134±0.0022	0.066		
D14	0.0103±0.0121	0.0159±0.0152	0.314		
D28	0.0227±0.0184	0.0147±0.0137	0.281		

The p value represents the significance level of the difference in the change between the groups during the study, determined by the independent-sample t-test. ** F1 and F1 group - given as the internal group factor (within subject factors – F1) and as the factor of differences between the groups (between subject factors – F1 group). T0A- Total organic acids, calculated as lactic acid (g/100ml)

Acknowledgments:

This research was supported in part by Grant No. 142018B from the Ministry of Science and Technological Development of the Republic of Serbia. We thank Mirjana Rašović and Dragana Cvetičanin, MD, and the staff of the Center for the Welfare of Infants, Children and Adolescents, Belgrade, for their cooperation in this study. We also thank all the families who provided the fecal samples.