NEW APPROACHES FOR ASSESSMENT AND IMPROVEMENT OF ENVIRONMENTAL STATUS IN BALKAN REGION:
INTERACTIONS BETWEEN ORGANISMS AND ENVIRONMENT

Sremska Kamenica, Serbia

ABSTRACTS
INTERNATIONAL conference NewEnviro 2012 (2012; Sremska Kamenica)


Tiraž 100. – Registar.

ISBN 978-86-87785-38-0

а) Животна средина – Защита – Апстракти

COBISS.SR-ID 271698183
New approaches for assessment and improvement of environmental status in Balkan region: interactions between organisms and environment

Organizational board

Dr Aleksandar Andrejević, full professor, rector
Dr Dejana Panković, full professor, Faculty of Environmental Protection, Vice rector for science
Dr Ljubinko Jovanović, full professor, dean of the Faculty of Ecological Agriculture
Dr Mira Pucarević, full professor, dean of the Faculty of Environmental Protection
Dr Lilijana Budakov, assistant professor
Dr Vesela Radović, assistant professor
Dr Milanko Pavlović, assistant professor
Dr Olivera Nikolić, assistant professor
Dr Rastko Vasiljić, assistant professor
Dr Milica Kašanin-Grubin, assistant professor
Dr Nataša Žugić-Drakulić, assistant professor

Program board

Dr Zoran Cerović, Centre Universitaire Paris-Sud, Orsay Cedex, France
Prof. dr Csaba Vágvölgyi, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
Dr Ernako Vadim, V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia
Dr Alfred Heering, Julius Kühn-Institut (JKI), Quedlinburg, Germany
Dr Cristina Silvar, Faculty of Sciences, The University of A Coruña, A Coruña, Spain
Dr Ivan Špáni, Faculty of Chemical Technology, Slovak Technical University, Bratislava, Slovak Republic
Dr Dragan Perović, Julius Kühn-Institut (JKI), Quedlinburg, Germany
Dr Biljana Kukavica, Faculty of Natural Sciences, University of Banja Luka, Bosnia and Herzegovina
Prof. dr Rudolf Kastori, member of Academy of sciences in the province of Vojvodina and in Hungary
Dr Dragan Škoric, prof. emeritus, member of Serbian Academy of Sciences
Dr Miroslav Vrvić, full professor, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
Dr Sonja Velević-Jovanović, research professor, director of the Institute for multidisciplinary research, University of Belgrade, Belgrade, Serbia
Dr Vera Račić, full professor, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
Dr Miroslav Nikolić, research professor, Institute for multidisciplinary research, University of Belgrade, Belgrade, Serbia
Dr Dragan Dražić, scientific researcher, Institute of Forestry, Belgrade, Serbia
Dr Dejana Panković, full professor, Faculty of Environmental Protection, Vice rector for science of the Educons University, Sremska Kamenica, Serbia
Dr Ljubinko Jovanović, full professor, Faculty of Ecological Agriculture, Educons University, Sremska Kamenica, Serbia
Dr Mira Pucarević, full professor, dean of the Faculty of Environmental Protection, Educons University, Sremska Kamenica, Serbia
Dr Larisa Jovanović, full professor, Faculty of Environmental Protection, Educons University, Sremska Kamenica, Serbia
New approaches for assessment and improvement of environmental status in Balkan region: interactions between organisms and environment

Publisher
Educons University

Editors
Prof. dr Dejana Panković
Prof. dr Ljubinko Jovanović
Prof. dr Mira Pucarević

Technical editor
Gordana Danilović

Photograph in front page
Miloš Jovanović
Hammer production

ISBN: 978-86-87785-38-0

Printed by
Copy INDEX, Novi Sad

Number of copies
100

Educons University, Sremska Kamenica, Serbia, 28-30 May 2012
Supported by the Ministry of Education and Science and Provincial Secretariat for Science and Technological Development
Humic acid - ability to use as natural surfactants

Jelena Avdalović¹, Srdan Miletić², Vladimir Beškoski², Mila Ilić², Gordana-Gojgić Cvijović², Miroslav Vrvić³

¹Institute for Technology of Nuclear and Other Mineral Raw Materials, Belgrade, ²Institute of Chemistry, Technology and Metallurgy, Belgrade, ³Faculty of Chemistry, University of Belgrade

The structure characteristics of humic acids (HAs) indicate that they have amphiphilic properties, and can act as natural surfactants, i.e., can reduce the surface tension of water forming at high concentrations similar to micelle structure. HAs can be used as natural surfactants and can be proposed for technological applications. HAs extraction from the soil is very difficult and yields are very low. In contrast, biomass offers the possibility to obtain low cost HAs with good yields. This fact implicates the possibility of using biomass and municipal solid waste as a source of humic acids, which could replace synthetic surfactants in various applications. An interesting result in the use of surfactants as HAs has been given for the remediation of soil.

Remediation of soil means detoxification of polluting agents. In recent years the use of bioremediation which uses microorganisms is rising for in situ degradation.

The ability of HAs to increase the solubility of contaminants was tested directly on the soil. Humic acids at a concentration of 10 mgL⁻¹ were able to remove a similar amount of pollutants and polycyclic aromatic hydrocarbons (PAH), thiophene, as same as SDS and Triton X-100.

HAs exhibit the properties of surfactants and can be used as substitutes for synthetic surfactants for various applications. However, to fully realize the idea of using humic acids as natural surfactants, it is necessary to establish adequate procedures for quality control, certification and labeling. Without this it would be difficult to promote as the constituents on the competitive market.

Our research results in connection with HAs, during ex situ bioremediation, also included in this paper.

Acknowledgement
This research is a part of project III43004 funded by the Ministry of Education and Science of the Republic of Serbia.
What are the surfactants?

Surface-active agents (surfactants) belong to a group of substances that at low concentrations are adsorbed onto the surface or interfaces of a system altering the free energy of those systems (Rosen, 2004). In the case of water as solvent, surfactant consists of a hydrophilic head and a hydrophobic tail. In water, surfactant molecules concentrate at the water–air interface, with the hydrophilic heads oriented towards the water and the hydrophobic tails oriented away from it (West and Harwell, 1992). When surfactants arrange themselves along the water–air interface, the surface tension of the solution decreases with increasing surfactant concentration until the surface tension is below a critical point. The concentration at which the critical point occurs indicates the formation of micelle structures and it is defined as the critical micelle concentration (CMC) (Haigh, 1996). A hydrophobic molecule in contact with an aqueous solution containing surfactant tends to arrange itself within the core of the micelles. Therefore the hydrophobic core of the micelle structure enables the surfactant to enhance the aqueous solubility of hydrophobic organic compounds, increasing their apparent solubility (West and Harwell, 1992).

Humic acids molecules as natural surfactants

Humic acids (HAs), one of the most important fraction of humic substances are composed of hydrocarbon chains that come from a relatively unchanged segments of plant polymers, and hydrophilic fraction, which mainly consist of ionic groups such as carboxylic acids, and the non polar compounds such as phenols, alcohols, aldehydes, ketones, amides and amines. These characteristics indicate that humic acids have amphiphilic properties, and can act as natural surfactants, i.e. can reduce the surface tension of water forming at high concentrations similar to micelle structure.

Chemical characterization of humic acids

The ability of HAs to arrange themselves so as to have their internal hydrophobic groups (hydrocarbon) and hydrophilic portions outwards, such as carboxyl, phenols and hydroxy groups, depends on the length and flexibility of their constituent chains. Intramolecular aggregation of HAs plays an important role in the micelle formation, and long flexible HA polymers are considerably the best sequestrating agents (Engebretson and Von Wandruszka, 1997). The presence of nitrogen compounds in HAs seems, also, to affect CMC (Quadri et al., 2008), in agreement with what was reported for the synthetic surfactant. Amides have been reported to be incorporated in the aggregate/micelle lowering CMC. Amide molecules are probably adsorbed at the outer portion of the micelle, close to the water–micelle interface reducing the work required for micellization, as a consequence of the reduction of the mutual repulsion of the polar groups (COO–) of HA (Rosen, 2004).

Hypothetical structure of humic acids by Stevenson

is given in Figure

References


Stevenson FJ. Humus chemistry. 2nd ed. New York: John Wiley & Sons 1994


