UNESCO sponsored Conference

7th CONFERENCE ON SUSTAINABLE DEVELOPMENT OF ENERGY, WATER AND ENVIRONMENT SYSTEMS

BOOK OF ABSTRACTS

July 1 – 7 2012, Ohrid, Republic of Macedonia

Organizers

University of Zagreb, Zagreb, Croatia

Macedonian Academy of Sciences and Arts, Research Center for Energy, Informatics and Materials, MANU-ICEIM Skopje, Macedonia

Instituto Superior Técnico, Lisbon, Portugal

In cooperation with:

Aalborg University, Aalborg, Denmark Cologne University of Applied Sciences, Cologne, Germany Delft University of Technology, Delft, The Netherlands University of Dubrovnik, Dubrovnik, Croatia INP, Grenoble, France Jozef Stefan International Postgraduate School, Ljubljana, Slovenia University of Pannonia, Veszprém, Hungary Industrial University of Santander, Santander, Colombia "Vinča" Institute of Nuclear Sciences, Belgrade, Serbia

Partners

UNESCO, Paris, France

International Centre for Sustainable Development of Energy, Water and Environment Systems, Zagreb, Croatia

The Combustion Institute – Croatian Section, Zagreb, Croatia

The Club of Rome, Croatian, Slovenian, Austrian Association, European Support Centre, Zagreb/Ljubljana/Vienna

The World Academy of Art and Science

Mediterranean Network for Engineering Schools and Technical Universities – RMEI, Marseille, France

International Scientific Committee

- Prof. Maria da Graça Carvalho, Instituto Superior Técnico, Lisbon, Portugal, Co-chair Prof. Neven Duic, University of Zagreb, Zagreb, Croatia, Co-chair
- Prof. Ingo Stadler, Cologne University of Applied Sciences, Cologne, Germany, Co-chair for the Western Europe
- Prof. Viatcheslav Kafarov, Industrial University of Santander, Santander, Colombia, Co-Chair for the Americas
- Prof. Jiří Jaromír Klemeš, University of Pannonia, Veszprém, Hungary, Co-Chair for the Central and Eastern Europe
- Prof. Naim H. Afgan, Instituto Superior Tecnico, Lisbon, Portugal
- Prof. Zvonimir Guzović, University of Zagreb, Zagreb, Croatia
- Prof. Mireille Jacomino, Grenoble Institute of Technology, Grenoble, France
- Dr. Andreas Kallioras, National Technical University of Athens, Athens, Greece
- Prof. Tarik Kupusovic, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Prof. Vladimir Lipovac, University of Dubrovnik, Dubrovnik, Croatia
- Prof. Henrik Lund, Aalborg University, Aalborg, Denmark
- Prof. Natasa Markovska, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
- Prof. Brian Vad Mathiesen, Aalborg University, Aalborg, Denmark
- Dr. Simeon Oka, Institute Vinča, Belgrade, Serbia
- Prof. Jordan Pop-Jordanov, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
- Prof. Nikola Ruzinski, University of Zagreb, Zagreb, Croatia
- Prof. Daniel Rolph Schneider, FSB, University of Zagreb, Zagreb, Croatia
- Prof. Ivo Šlaus, Rudjer Boskovic Institute, Zagreb, Croatia
- Dr. Petar Varbanov, University of Pannonia, Veszprém, Hungary
- Prof. Aleksander Zidanšek, Institute Jozef Stefan, Ljubljana, Slovenia

Local Organizing Committee

Prof. Nataša Markovska, MANU-ICEIM, Chair Prof. Neven Duić, FSB, University of Zagreb, Co-chair Prof. Zvonimir Guzović, FSB, University of Zagreb Prof. Daniel Rolph Schneider, FSB, University of Zagreb Dr. Marko Ban, FSB, University of Zagreb Dr. Silvana Markovska Simoska, MANU-ICEIM MSc Aleksandar Dedinec, MANU-ICEIM MSc Aleksandra Kanevce. FINKI, UKIM MSc Meri Karanfilovska, School of Journalism and Public Relation MSc Verica Taseska, MANU-ICEIM Goce Aleksoski, MANU-ICEIM Miro Brangjolica, MANU-ICEIM Boris Ćosić, FSB, University of Zagreb Vladimir Dinkovski, MANU-ICEIM Ankica Đukić, FSB, University of Zagreb Biljana Gjoneska, MANU-ICEIM

Nevena Grubelić, FSB, University of Zagreb Goran Krajačić, FSB, University of Zagreb Robert Mikulandrić, FSB, University of Zagreb Hrvoje Mikulčić, FSB, University of Zagreb Luka Perković, FSB, University of Zagreb Zvonimir Petranović, FSB, University of Zagreb Sofija Pop-Jordanova, MANU-ICEIM Tomislav Pukšec, FSB, University of Zagreb Iva Ridjan, FSB, University of Zagreb Milan Vujanović, FSB, University of Zagreb

Publisher:	Faculty of Mechanical Engineering and Naval Architecture, Zagreb
r ublisher.	
	ISSN 1847-7186
Editors:	Marko Ban
	Neven Duić
	Zvonimir Guzović
	Jiri Jaromir Klemeš
	Nataša Markovska
	Daniel Rolph Schneider
	Petar Varbanov
Technical Editor	: Sunčana Matijašević
Print:	Grafotisok, Skopje, Macedonia

Scientific Advisory Board

Prof. Ivo Šlaus, Rudjer Boskovic Institute, Zagreb, Croatia - Chairman

Dr. Ahmed Abdala, The Petroleum Institute, Abu Dhabi, Abu Dhabi, United Arab Emirates Dr. Amela Ajanovic, Technische Universitaet Wien, Vienna, Austria Dr. Mohanad Alata, King Saud University, Rivadh, Saudi Arabia Dr. Luis Alves, Instituto Superior Tecnico, Lisbon, Portugal Prof. Biliana Angelova. Institue of Economics. UKIM. Skopie. Macedonia Dr. Aleksandra Anić Vučinić, University of Zagreb, Geotechnical Faculty, Varaždin, Croatia Prof. Jesus Arauzo, University of Zaragoza, Zaragoza, Spain Prof. Hope Ashiabor, Macquarie University, Sydney, Australia Prof. Lubka Atanasova, University Prof. Dr Assen Zlatarov - Bourgas, Bourgas, Bulgaria Prof. Ofira Ayalon, Samuel neaman inst. and Univ. of Haifa, Haifa, Israel Prof. Milun Babic, Faculty of Engineering, Kragujevac, Serbia Prof. Jan Baeyens, University of Surrey, Guildford, United Kingdom Dr. Vukman Bakić, Institute of Nuclear Sciences, Belgrade, Serbia Prof. Igor Balen, FSB, University of Zagreb, Zagreb, Croatia Dr. Marko Ban, FSB, Zagreb, Croatia Dr. Sadik Bekteshi, University of Pristina, Pristina, Kosovo Dr. Daniel Beysens, CEA & ESPCI, Paris, France Dr. Vinca Bigo, Euromed Management School, Marseille, France Prof. Ana Maria Blanco-Marigorta, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain Prof. Vesna Borozan, University Ss. Cyril & Methodius, Skopje, Macedonia Prof. Branko Bosnjakovic, UN Economic Commission for Europe (retired), Geneve, Switzerland Dr. Wojciech Budzianowski, Wroclaw University of Technology, Wroclaw, Poland Dr. Monica Camuffo, Ca' Foscari University, Venice, Italy Prof. Ennio Cardona, University of Palermo, Palermo, Italy Prof. Damiana Chinese, University of Udine, Udine, Italy Prof. Pedro J. Coelho, Instituto Superior Tecnico, Lisbon, Portugal Prof. Luis Cortez, UNICAMP, Campinas, Brazil Prof. Renato M. Cotta, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Prof. Tugrul Daim, Portland State University, Portland, United States Prof. Gradimir Danon, University of Belgrade-Faculty of Forestry, Belgrade, Serbia Prof. Marcello De Falco, University Campus Bio-Medico of Rome, Rome, Italy Prof. Igor Dekanić, University of Zagreb, Zagreb, Croatia Prof. Silvio de Oliveira Junior, University of Sao Paulo, Sao Paulo, Brazil Dr. Cheryl Desha, Queensland University of Technology, Brisbane, Australia Prof. Josko Deur, University of Zagreb, Zagreb, Croatia Prof. Slaven Dobrovic, University of Zagreb FAMENA, Zagreb, Croatia Dr. Damir Dović, University of Zagreb, Zagreb, Croatia Dr. Dragana Drazic, Institute for Forestry, Belgrade, Serbia

Prof. Diamantino Durão, Lusiada University, Lisbon, Portugal

Prof. Momir Đurović, Montenegrin Academy of Sciences and Arts, Podgorica, Montenegro Prof. Ejub Dzaferovic, University of Sarajevo, Sarajevo, Bosnia and Herzegovina Prof. Jacek Eliasz, West Pomeranian University of Technology, Szczecin, Poland, Szczecin, Poland Dr. Mansour Emtir, Academy of graduate studies, Tripoli, Libya Mr. Bredo Erichsen, Statkraft, Tirana, Albania Prof. Javad A. Esfahani, Ferdowsi university of Mashhad, Mashhad, Iran Prof. Bruno Fabiano, Università degli Studi di Genova, GENOVA, Italy Prof. Ying Fan, Institute of Policy and Management, Chinese Academy of Sciences, Beiiing, China Prof. Göran Finnveden, Royal Institute of Technology, Stockholm, Sweden Dr. Georgios Florides, Cyprus University of Technology, Limassol, Cyprus Dr. Martina Flörke, University of Kassel, Kassel, Germany Prof. Gilles Fraisse, LOCIE - Université de Savoie, CHAMBERY cedex, France Prof. Bernard Frankovic, University of Rijeka, Faculty of Engineering, Rijeka, Croatia Prof. Noureddine Gaaloul, INRGREF, Ariana, Tunisia Prof. Antun Galovic, FSB, University of Zagreb, Zagreb, Croatia Prof. Susan Gaskin, McGill University, Montreal, Canada Prof. Maria Gavrilescu, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania Prof. Rumen Gechev, University of National and World Economy, Sofia, Bulgaria Prof. Michael Georgiadis, Aristotle University of Thessaloniki, Thessaloniki, Greece Prof. Nesreen Ghaddar, American University, Beirut, Lebanon Dr. Dionysios Giannakopoulos, Institute of Solid Fuels Technology and Applications / Centre for Research and Technology Hellas, Ptolemais, Greece Prof. Ranko Goic, University of Split, Split, Croatia Prof. Iztok Golobič, University of Ljubljana, Ljubljana, Slovenia Dr. Mirjana Golusin, Educons University, Sremska Kamenica, Serbia Dr. Borislav Grubor, Institute of Nuclear Sciences Vinča, Belgrade, Serbia Prof. Siamak G. Shahneshin, SHAGAL | iodaa Interdisciplinary Office for Design, Architecture & Arts, Kusnacht-Zurich, Switzerland Prof. Petar Gvero, University of Banja Luka, Banja Luka, Bosnia and Herzegovina Prof. Reinhard Haas, Vienna University of Technology, Vienna, Austria Prof. Simon Harvey, Chalmers University of Technology, Göteborg, Sweden Prof. Pavel Hasal, ICT Prague, Prague, Czech Republic Prof. Hikmat Hasanov, Khazar University, Baku, Azerbaijan Prof. Boshu He, Beijing Jiaotong University, Beijing, China Prof. Arthur Heidebrecht, McMaster University, Hamilton, Canada Prof. Carla Henriques, INESC Coimbra, Coimbra, Portugal Dr. Jens Hetland, SINTEF Energiforksning AS, Trondheeim, Norway Prof. Hui Hong, Chinese Academy of Sciences, Beijing, China Prof. Kiril Hristovski, Arizona State University, Mesa, AZ 85212, United States Prof. Goran Jankes, University of Belgrade Faculty of Mechanical Engineering, Belgrade, Serbia Prof. Gilberto M. Jannuzzi, University of Campinas, Campinas, Brazil Prof. Ángel Jiménez Álvaro, Universidad Politécnica de Madrid, Madrid, Spain Prof. Filip Johnsson, Chalmers University of Technology, Göteborg, Sweden

Dr. Skender Kabashi, University of Prishtina, Skenderaj, Kosovo Dr. Yigal Kadar, Mekorot Water Company Ltd, Tel-Aviv, Israel Prof. Yuya Kajikawa, The University of Tokyo, Tokyo, Japan Prof. Emmanuel Kakaras, National Technical University of Athens, Athens, Greece Prof. Soteris Kalogirou, Cyprus University of Technology, Limassol, Cyprus Prof. Petro Kapustenko, National Technical University, Kharkiv, Ukraine Dr. Lee Keat Teong, Universiti Sains Malaysia, Pulau Pinang, Malaysia Dr. Jennifer Koch, Oregon State University, Corvallis, Or, United States Prof. Atanas Kochov, St Cyril and Methodious University, Skopie, Macedonia Prof. Karel Kovarik, University of Zilina, Zilina, Slovakia Prof. Piotr Kowalik, Gdansk University of Technology, Gdansk, Poland Dr. Darko Kozarac, University of Zagreb, Zagreb, Croatia Mr. Goran Krajačić, FSB, Zagreb, Croatia Prof. Zdravko Kravanja, University of Maribor, Maribor, Slovenia Ms. Aleksandra Krkoleva, FEIT, UKIM, Skopje, Macedonia Prof. Svetislav Krstic, Faculty of Natural Sciences, Skopje, Macedonia Dr. Harn Wei Kua, School of Design and Environment, National University of Singapore, Singapore, Singapore Dr. Vladimir I. Kuprianov, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand Dr. Ana Lazaro, Universidad de Zaragoza, Zaragoza, Spain Prof. Walter Leal Filho, Hamburg University of Applied Sciences, Hamburg, Germany Dr. Dražen Lončar, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia Prof. Antonio G. Lopes, Universidade de Coimbra, Coimbra, Portugal Prof. Peter Lund, Aalto University, Espoo, Finland Prof. W Malalasekera, Loughborough University, Loughborough, United Kingdom Prof. Anca Marina Marinov, Politehnica University of Bucharest, Bucharest, Romania Prof. Dora Marinova, Curtin University of Technology, Perth, Australia Dr. Isabel Paula Marques, LNEG-Laboratório Nacional de Energia e Geologia, I.P., Lisbon, Portugal Dr. Fabio V. Matera, CNR-ITAE, Messina, Italy Dr. Kenichi Matsumoto, The University of Shiga Prefecture, Hikone, Japan Dr. Marcelle McManus, University of Bath, Bath, United Kingdom Mr. José Melim Mendes, AREAM - Regional Agency for Energy and Environment of Madeira, Funchal - Madeira, Portugal Prof. Vera Mesko, International Balkan University, Skopje, Macedonia Prof. Josua P Meyer, University of Pretoria, Pretoria, South Africa Prof. Andrea Micangeli, Sapienza University of Rome, Rome, Italy Prof. Adnan Midilli, Rize University, Rize, Turkey Dr. Slobodan Milutinovic, University of Nis, Nis, Serbia Prof. Mousa Mohsen, Hashemite University, Zarga, Jordan Prof. Silvana Mojsovska, Institute of Economics, Skopje, Macedonia Prof. Richard Moles, University of Limerick, Limerick, Ireland (Republic) Dr. Bernd Möller, Aalborg University, Aalborg, Denmark Prof. Tatiana Morosuk, Technische Universitaet Berlin, Berlin, Germany

Prof. Brahim MOUHOUCHE, Ecole Nationale Supérieure Agronomique (E	NSA ex INA),
Alger, Algeria Dr. Karel Mulder, TU-Delft, Delft, Netherlands	
Prof. Vincenzo Naso, Sapienza University of Rome, Rome, Italy	-:1
Prof. Silvia Nebra, UFABC - Universidade Federal del ABC, Campinas, Bra	211
Prof. Salvatore Nicosia, Universita degli Studi di Palermo, Palermo, Italy	
Prof. Vesna Nikolic, University of Nis, Nis, Serbia	atur a cal
Prof. Boris. N. Kuznetsov, Siberian Federal University, Institute of Chemis	stry and
Chemical Technology SB RAS, Krasnoyarsk, Russian Federation	
Prof. Peter NOVAK, Faculty VITES, LJUBLJANA, Slovenia	
Prof. Shin'ya Obara, Kitami Institute of Technology, Kitami, Hokkaido, Ja	pan
Ms. Astrid Offermans, Maastricht University, Maastricht, Netherlands	
Prof. Miguel Oliveira Panão, Instituto Superior Técnico, Lisbon, Portugal	
Dr. Abdeen Omer, University of Nottingham, Nottingham, United Kingdo	om
Prof. Andres Öpik, Tallinn University of Technology, Tallinn, Estonia	
Prof. Fabio Orecchini, University of Rome La Sapienza, Rome, Italy	
Dr. Bernadette O'Regan, University of Limerick, Limerick, Ireland (Repub	lic)
Dr. Alla Pakina, Moscow State University, Moscow, Russian Federation	
Prof. Teijo Palander, University of Eastern Finland, Joensuu, Finland	
Dr. Julio Pedraza Garciga, Universidad Central de Las Villas, Santa Clara,	Cuba
Dr. Terry Penney, NREL, Golden, United States	
Prof. Patricia Pereira da Silva, University of Coimbra and INESCC, Coimbr	a, Portugal
Prof. Nedjeljko Perić, University of Zagreb, Zagreb, Croatia	
Prof. Milan Pesic, Vinca Institute of Nuclear Sciences, Belgrade, Serbia	
Prof. Tatjana Petkovska Mircevska, Instiute of Economics, UKIM, Skopje,	Macedonia
Mr. Gonzalo Piernavieja Izquierdo, Instituto Tecnologico de Canarias, Po	zo Izquierdo,
Spain	
Prof. Matilde Pietrafesa, Mediterranea University of Reggio Calabria, Reg	ggio Calabria,
Italy	
Prof. Petros Pilavachi, University of Western Macedonia, Kozani, Greece	
Prof. Radmil Polenakovik, Faculty of Mechanical Engineering, Skopje, Ma	acedonia
Prof. Andrew Pollard, Queen's University, Kingston, Canada	
Dr. Nikola Popov, ELEM (Elektrani na Makedonija), Skopje, Macedonia	
Prof. Tatiana Popova, South Ural state university., Tcheliabinsk, Russian	Federation
Prof. Predrag Popovski, Ss. Cyril and Methodius University, Skopje, Mace	edonia
Prof. Dr. Andrej Predin, University of Maribor, Krško, Slovenia	
Mr. Tomislav Pukšec, University of Zagreb, Faculty of Mechanical engine	ering and Naval
Architecture, Zagreb, Croatia	
Prof. Ersan Putun, Anadolu University, Eskişehir, Turkey	
Prof. Predrag Raskovic, University of Nis, Leskovac, Serbia	
Dr. Rob Raven, Technische Universiteit Eindhoven, Eindhoven, Netherlan	nds
Prof. Nenad Ravlic, Faculty of Civil Engineering in Rijeka, Rijeka, Croatia	
Prof. Mauro Reini, University of Trieste, Pordenone, Italy	
Prof. Ivica Ristovic, University of Belgrade, Faculty of Mining and Geolog	y, Belgrade,
Serbia	
Prof. Gianfranco Rizzo, Universita degli Studi di Palermo, Palermo, Italy	

Prof. Nabil Rofail, Desert Researh Center, Cairo, Egypt

Dr. Akshai Runchal, ACRi -- The CFD Innovators, Bel Air, CA, United States Dr. Esa Ruuskanen. University of Oulu. Oulu. Finland Prof. David L Ryan, University of Alberta, Edmonton AB, Canada Prof. Ichiro Sakata, The University of Tokyo, Tokyo, Japan Prof. Manuela Sarmento, University Lusiada and Military Academy, Lisbon, Portugal Dr. Thomas Schauer, The Club of Rome - European Support Center, Vienna, Austria Dr. Holger Schlör, Forschungszentrum Jülich (Research Centre Jülich), Jülich, Germany Prof. Jurgen Schmandt, University of Texas, Austin, United States Prof. Hans Schnitzer, Graz University of Technology, Graz, Austria Prof. Enrico Sciubba, Universita di Roma 1 - La sapienza, roma, Italy Mr. Jordi Segalas, Universitat Politecnica de Catalunya - Barcelona Tech, Barcelona, Spain Dr. Bujar Seiti, Faculty of Natural Sciences, University of Tirana, Tirana, Albania Prof. Dusan Sekulic, University of Kentucky, Lexington, United States Prof. Viriato Semiao, Instituto Superior Tecnico, Lisbon, Portugal Prof. Raphael Semiat, Technion-Israel Institute of Technology, Haifa, Israel Dr. Subhas K. Sikdar, United States Environmental Protection Agency, Cincinnati, United States Prof. Semida Silveira, KTH - Royal Institute of Technology, Stockholm, Sweden Prof. Nuno Simões, ITeCons, Coimbra, Portugal Dr. Dana Sitanyiova, University of Zilina, Zilina, Slovakia Prof. Davor Škrlec, University of Zagreb, Zagreb, Croatia Prof. Bill Slee, The James Hutton Research Institute, Aberdeen, United Kingdom Prof. Izet Smajevic, University of Sarajevo, Sarajevo, Bosnia and Herzegovina Dr. Behzad Sodagar, University of Lincoln, Lincoln, United Kingdom Dr. Vladimir Soldo, University of Zagreb, Zagreb, Croatia Prof. Stefano Soriani, Università Ca' Foscari, Venice, Italy Prof. Wojciech Stanek, Politechnika Slaska, Gliwice, Poland Prof. Gordana Stefanovic, University of Nis, Nis, Serbia Prof. Vladimir Stevanovic, University of Belgrade, Belgrade, Serbia Prof. Vesna Stojanova, FBE, Skopje, Macedonia Prof. Srećko Švaić, University of Zagreb, Zagreb, Croatia Prof. Mohd Raihan Taha, University Kebangsaan Malaysia, Faculty of Engineering and Built Environment, Bangi, Malaysia Prof. Rubin Taleski, Ss Cyril and Methodius University, Faculty of EE and IT, Skopje, Macedonia Dr. Mario Tarantini, ENEA, Bologna, Italy Dr. Agnieszka Terelak-Tymczyna, West Pomeranian University of Technology, Szczecin, Poland, Szczecin, Poland Prof. Zeliko Tomsic, Faculty of Electrical Engineering and Computing, Zagreb, Croatia Prof. Bernard Tourancheau, UMR LIG, Grenoble, France Dr. Kim Chi Tran - Gulbrandsen, Norwegian Water and Energy Directorate, Oslo, Norway Prof. Strahinja Trpevski, Faculty of arhitecture, Skopje, Macedonia Prof. Alberto Tsamba, Universidade Eduardo Mondlane, Maputo, Mozambique Dr. Javier Uche, CIRCE - University of Zaragoza, Zaragoza, Spain Prof. Sergio Ulgiati, Universita degli Studi di Napoli, Napoli, Italy Dr. Gökhan Unakitan, Namik Kemal University, Tekirdag, Turkey

Prof. Krzysztof Urbaniec, Warsaw University of Technology, Plock, Poland

Prof. Orhan Uslu, Yeditepe University, Istanbul, Turkey Dr. Basak Burcu Uzun, Anadolu University, Eskisehir, Turkey Dr. Artur Vakhitov, Eco-Forum of Uzbekistan, Tashkent, Uzbekistan Dr. Luis Velazguez, University of Sonora, Hermosillo, Mexico Prof. Vittorio Verda, Politecnico di Torino, Torino, Italy Dr. Neven Voća, University of Zagreb Faculty of Agriculture, Zagreb, Croatia Prof. Branko Vučijak, Hydro Engineering Institute Sarajevo, Sarajevo, Bosnia and Herzegovina Prof. Dusica Vucinic, University of Belgrade, Belgrade, Serbia Dr. Milan Vujanović, University of Zagreb, FSB, Zagreb, Croatia Prof. Vlado Vukovic, Faculty for Agricultural Sciences and Food, Skopje, Macedonia Dr. Milivoj Vulic, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Dr. Michael Vynnycky, University of Limerick, Limerick, Ireland (Republic) Dr. Mingna Wang, Institute of Water Resources and Hydropower Research, Beijing, China Prof. Yi-Ming Wei, Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing, China Prof. Jinyue Yan, Royal Institute of Technology, Stockholm, Sweden Prof. Mohamed Fathy Yassin Eisa, Kuwait University, Kuwait, Kuwait Prof. En Sup Yoon, Seoul National University, Seoul, Korea South Prof. Anastasia Zabaniotou, Aristotle University of Thessaloniki, Thessaloniki, Greece Dr. Tomás Zamora, Instituto de Biomecánica de Valencia (IBV), Valencia, Spain Prof. Bruno Zelić, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia Dr. Denis Zernovski, CDEPR, Skopje, Macedonia Prof. Na Zhang, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China Dr. Li Zhou, Institute of Energy, Environment and Economy, Tsinghua University, Beijing, China

- Prof. Andrzej Ziebik, Silesian University of Technology, Gliwice, Poland
- Dr. Manos Zoulias, Centre for Renewable Energy Sources, Pikermi, Greece

Dr. Zdena Zsigraiová, Instituto Superior Técnico, Lisbon, Portugal

Prof. Davor Zvizdić, FSB - University of Zagreb, Zagreb, Croatia

Contents

Invited lectures		34
	Claims and Verifications of Sustainable Technologies	
SDWS2012.0550	Integration of Energy and Resource Flows	35
SDWS2012.0521	Water Scarcity: Non-Conventional Water Resources Supply in	
Jordan		36
Created enoring of	nation dedicated to the 25th anniversary of "Our Common	
	ession dedicated to the 25th anniversary of "Our Common	20
	Sustainable Development of Energy and Environment	
	Microgrid Roadmap: Sustainable Energy Strategy for Small Power	
SDWS2012.0605	Our Common Future - 25 Years Later	41
Special session: Si	mart grids	42
	Smart Grid in Russia: Today's and Tomorrow's Practices	
	Control Strategies for Smart Grids	
	Smart Meter Communication Technologies	
	Considering the Needs of the Customer in the Electricity Network	
	ure	
SDWS2012.0500	Multi-Agent Systems Strategies for Integration of Prosumers in	
	Grids	47
	Socioeconomic Impacts of Smart Grids	
		- 0
	nergy and water efficiency for sustainable future	50
	Increasing Economic Potential for Process Heat Recovery by	
	sing Hen Designs Over a Full Lifetime	53
	A Novel Optimization Approach of Improving Energy Recovery in	
	tting Heat Exchanger Network with Exchanger Details	54
	Principles for Sustainability in Modern State-Building for Efficient	
	and Water Supply	
	Improved Targeting of Industrial Total Sites Accounting for Difference	
	ansfer Properties	
	Calcium Sulphate Fouling in a Batch Stirred Cell	
	Numerical Investigation of Transport Phenomena in Spiral-Wound	
	changers	
	Energy Saving Processes of Biofuel Production from Fermentation	
	Process Integration in Biodiesel Production	60
	The Influence of Plate Corrugations Geometry on Plate Heat	
	ger Performance in Specified Process Conditions	60
	Full Scale Plume Rise Modeling in Calm and Low Wind Velocity	
	ons	61
	Rescheduling Operations Demands to Increase Solar Energy	
	ion	62
	Water Efficiency Indicators in Croatian Manufacturing: Some	_
Lessons	s and Policy Implications	63

SDWS2012.0460 Technical Innovation for Heat Transfer Intensification for Heat	
Recovery	64
SDWS2012.0298 A Holistic Process Integration Approach for Regional Carbon	
Planning from Stationery Point Sources	
SDWS2012.0364 The Logging Waste as Inexhaustible Resource for Alternative Energy	
SDWS2012.0362 Potential Maximum C Stores in St. Petersburg Region	67
SDWS2012.0462 Estimating Benefits of Heat Transfer Enhancement in Hen Design	68
SDWS2012.0555 The Potential of Total Site Process Integration and Optimisation fo	r
Energy Saving and Pollution Reduction	69
SDWS2012.0378 Simultaneous Optimization Model for the Synthesis of Heat-	
Integrated Process Water Networks	70
SDWS2012.0491 Carbon Dioxide Capture by Microalgae in a Photobioreactor :	
Sustainable Process Development	
SDWS2012.0307 Optimal Renewable Energy Systems for Regions	
SDWS2012.0043 Modelling Energy Demand of Croatian Industry Sector	72
SDWS2012.0226 Environmental Analysis of the Phase Change Materials (PCM) to	
Improve Building Energy Performance	
SDWS2012.0085 Oil Palm Biomass Corridor to Promote Malaysia Green Economy	74
Panel: The energy security of Southeast Europe – the role of coal	76
SDWS2012.0579 The Energy Security of Southeast Europe - the Role of Coal / Panel	
Discussion	
SDWS2012.0595 Electricity from Lignite in the South-East Europe	
SDWS2012.0599 Integration of Coal Fired Power Plants in Renewable Power System	
	-
SDWS2012.0567 Coal and Renewables: Their Role in Germany	
SDWS2012.0601 Coal Power in Kosovo - Where Are the Limits of Sustainability?	79
Panel: Academia – industry collaboration in sustainable developement	31
SDWS2012.0569 Sustainable Materialization of Residues from Thermal Processes	
into Products - Smart-Pro ²	
SDWS2012.0585 Development of a New Accelerator and its Surrounding Applicatio	ns
for Sustainable Future	
SDWS2012.0586 Academia – a Forest Machine Industry Collaboration in Sustainable	
Energy Production	83
SDWS2012.0588 Removing Barriers to Foster Productive Industrial Academic	_
Partnerships	84
SDWS2012.0589 Academia-Industrial Collaboration in Sustainable Development:	
Design and Implementation of Innovative Biological Emissions Control	~-
Technologies SDWS2012.0593 Industry Academia Relationship	
Energy planning I	38
SDWS2012.0356 Assessment of the Impact of Renewable Energy and Energy	
Efficiency Policies on the Macedonian Energy Sector Development	88
SDWS2012.0073 Regional Energy Autarky: Potentials, Costs and Consequences for	
the Austrian Sauwald Region	89

SDWS2012.0160 Optimal Wind Power Generation in Existing Serbian Power System	
SDWS2012.0232 Managing of Hydro Energy Resources in a Power System with	
Integrated Res SDWS2012.0351 Employment as Indicator of EU Strategy 2020 Implementation –	91
Measurement and Analysis	92
SDWS2012.0553 The Importance of Jordan's Red Sea-Dead Sea Project for	~~
Integration of High Share of Intermittent Renewable Energy Sources	93
Life cycle assessment	
SDWS2012.0159 Life Cycle Analysis of the Integral Water Cycle in a City: a Guide fo Sustainable Planning	
SDWS2012.0019 Comparison of Energy Consumption in Life Cycle of Two Types of	54
Taps	95
SDWS2012.0109 LCA of the Environmental Performance of Iron Based Nanoscale	
Catalysts for the Conversion of CO ₂ into Fuels and Chemical Feedstocks	96
SDWS2012.0314 Environmental Assessment of CCHP Systems Based on Biomass Combustion in Comparison to Conventional Generation	07
SDWS2012.0311 Environmental Life Cycle Assessment of Transportation Fuel from	
Lignocellulosic Biomass	
SDWS2012.0444 Bitumen Road Paving and Tank Filling Processes – a Still Important	
and not Solved Environmental Issue.	
Energy system analysis I1	.00
SDWS2012.0106 Energy and Environmental Performance of Industrial Combined	
Heat and Power (CHP) in the Context of a Low Carbon UK 1	100
SDWS2012.0204 Modeling, Simulation and Analysis of Full Power Converter Wind	
Turbine with Permanent Synchronous Generator	101
SDWS2012.0054 Multi-Criteria Analysis of Electricity Supply Using Analytical Hierarchy Process – Case Study Slovenia1	01
SDWS2012.0181 Modelling Long-Term Dynamical Evolution of Southeast European	
Power Transmission System	
SDWS2012.0036 Computational Investigation on the Multiphase Flow Capabilities	of
Using Water and Ethanol as Heat Pipe Working Fluid 1	
SDWS2012.0037 Numerical Investigation of the Integration of Heat Transfer Device	
into Wind Tower1	.04
Water policy and the energy-water interaction1	.05
SDWS2012.0177 Managing Water Resource Futures and Their Connection to Land	
and Energy Resources	
SDWS2012.0097 Macedonian Water Management Policy and Climate Change 1 SDWS2012.0323 How to Increase Drinking Water Networks Efficiency and Optimize	
Green Electricity Production, by Means of Interconnection	
SDWS2012.0061 Integrated Water-Energy-GHG Management for a Sustainable	,
Future 1	
SDWS2012.0170 A Reliable, Flexible and Sustainable Water & Energy Integration: a	
Small Batch Electrodyalisis (ED) Plant Fed by a Photovoltaic (PV) Unit 1	109

Agriculture and Food11	10
SDWS2012.0540 Lifelong Learning for Farmers: Enhancing Competitiveness,	
Knowledge Transfer and Innovation in Support of Sustainable Production	
Systems1	10
SDWS2012.0165 Distillery Stillage as a New Substrate for Lactic Acid and Biomass	
Production1	11
SDWS2012.0499 Hplc Determination of Vitamin C from Indigenous Parsley Extracts	
Obtained by Different Extraction Techniques	12
SDWS2012.0385 Fuzzy Logic Based Control for Protected Cultivation	13
SDWS2012.0052 Global Biomass Needs for Food, Feed and Fuel in the Near Future	
	14
SDWS2012.0343 The Environmental Impacts of Utilising Wheat, Wheat Straw Or	
Energy Grasses for Biofuel Production.	15
Renewable energy resources11	17
SDWS2012.0249 Potential Planning Method for Supplying Energy Plant with	
Renewable Forest Fuels1	
SDWS2012.0045 Mapping the High Altitude Wind Energy in Southeast Europe 1	
SDWS2012.0063 Evaluation of Environmental Acceptability for Biomass Plants 1	18
SDWS2012.0190 Comparison Among Different Bioenergy Chains in the European	
Context Based on Their GHG Saving Potential	
SDWS2012.0282 Comparison of Different Solar Radiation Estimation Methods Used	
in Solar Energy Resource Assessment12	21
SDWS2012.0312 Private Forest Owners Play Key Role in European Forest Derived	
, , , ,	
Fuel Utilisation	22
Fuel Utilisation	
Fuel Utilisation	
Fuel Utilisation	24
Fuel Utilisation	24 24
Fuel Utilisation	24 24
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12	24 24
Fuel Utilisation 1 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy 12 Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study 12 City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with	24 / 25
Fuel Utilisation 1 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12	24 / 25
Fuel Utilisation 1 Energy system analysis II 1 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy 1 Audits in Industry 1 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study 1 City of Ljubljana, Trends up to 2050 1 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with 1 Under-Fire Air Introduction 1 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline	24 24 25 26
Fuel Utilisation 1 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy 12 Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study 12 City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with 12 Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline 12 Electrolyser 12	24 24 25 26
Fuel Utilisation 1 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy 12 Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study 12 City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with 12 Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline 12 Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field	24 / 25 26 27
Fuel Utilisation 1 Energy system analysis II 1 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy 1 Audits in Industry 1 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study 1 City of Ljubljana, Trends up to 2050 1 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with 1 Under-Fire Air Introduction 1 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline 1 Electrolyser 1 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field 0 Optimisation 1	24 / 25 26 27
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU 12	24 , 25 26 27 28
Fuel Utilisation 1 Energy system analysis II 1 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy 1 Audits in Industry 1 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study 1 City of Ljubljana, Trends up to 2050 1 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with 1 Under-Fire Air Introduction 1 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline 1 Electrolyser 1 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field 0 Optimisation 1	24 , 25 26 27 28
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU 12	24 / 25 26 27 28 29
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU CAP 12	24 , 25 26 27 28 29 30
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU CAP 12 GHG emissions 12 SDWS2012.0299 Carbon Footprint Management in Office Based Companies 13 SDWS2012.0331 Greenhouse Gas Emission Mitigation Scenarios Up to 2050: 14	24 , 25 26 27 28 29 30 30
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU CAP 12 GHG emissions 12 SDWS2012.0299 Carbon Footprint Management in Office Based Companies 13 SDWS2012.0331 Greenhouse Gas Emission Mitigation Scenarios Up to 2050: Modeling of Policies and Strategies for Belgrade 13	24 , 25 26 27 28 29 30 30
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU CAP 12 GHG emissions 12 SDWS2012.0331 Greenhouse Gas Emission Mitigation Scenarios Up to 2050: Modeling of Policies and Strategies for Belgrade 13 SDWS2012.0329 Co2 Linkage Effects of Taiwan's Electricity Sector by Input-Output 14	24 / 25 26 27 28 29 30 30
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU CAP 12 GHG emissions 12 SDWS2012.0331 Greenhouse Gas Emission Mitigation Scenarios Up to 2050: Modeling of Policies and Strategies for Belgrade 13 SDWS2012.0529 CO2 Linkage Effects of Taiwan's Electricity Sector by Input-Output Analysis 13	24 / 25 26 27 28 29 30 30
Fuel Utilisation 12 Energy system analysis II 12 SDWS2012.0309 EINSTEIN – Methodology and Software Tool for Advanced Energy Audits in Industry 12 SDWS2012.0198 Quality of Living and Related Sustainability Indicators – Case Study City of Ljubljana, Trends up to 2050 12 SDWS2012.0317 Improvement of Combustion Efficiency of Pulverised Coal with Under-Fire Air Introduction 12 SDWS2012.0258 The Nickel Foam as the Electrodes Material for an Alkaline Electrolyser 12 SDWS2012.0344 Potentials for Energy Savings Through Drinking Water Well Field Optimisation 12 SDWS2012.0337 An Alternative Solution for Fuel Switching According to the SEEU CAP 12 GHG emissions 12 SDWS2012.0331 Greenhouse Gas Emission Mitigation Scenarios Up to 2050: Modeling of Policies and Strategies for Belgrade 13 SDWS2012.0329 Co2 Linkage Effects of Taiwan's Electricity Sector by Input-Output 14	24 /25 26 27 28 29 30 30 31 32

SDWS2012.0290 Benefits of Using Molten Carbonate Fuel Cells for CO ₂ Capture in
CHP Plants at Wastewater Treatment Facilities
SDWS2012.0206 Minimum Work of Separation and Learning Curves for Carbon
Capture Based on Chemical Absorption 135
Energy economics/ Externalities
SDWS2012.0188 Does it Pay to Be Clean? Evidence from the Global Renewable
Energies Equity Indexes 137
SDWS2012.0349 Green GDP Accounting – Determination of Direct and External
Energy Related Costs of Economic Development
SDWS2012.0352 Environmental Taxes as Parameter of Sustainable Development
Metrix – Parameter of Strategic Control of EU Strategy 2020
Implementation
SDWS2012.0199 Wind Power and Employment in Brazil
SDWS2012.0157 Energy Efficiency Projects and Local Budget: from Lacking Revenues
Towards Successful Story for Sustainable Future 140
SDWS2012.0059 Modelling Gas Storage with Compressed Air Energy Storage in a
System with Large Wind Penetrations 141
Energy markets
SDWS2012.0425 The Looming Revolution: How Photovoltaics Will Change Electricity
Markets in Europe Fundamentally
SDWS2012.0030 The Influence of Internal "Self-Balancing" on the Operation of a
Power System
SDWS2012.0189 Impact of World Fossil Fuels Shocks to Spanish Market and Sector
Portfolios: a Multivariate Dynamic Heteroskedastic Approach
SDWS2012.0413 Electricity Prices and Energy Dependency: a Strategic Challenge in
the Spanish Case 146
SDWS2012.0412 Setting the Wholesale Electricity Price in Spain. A Simultaneous
Equations Model Based on Maximum-Entropy Approach
SDWS2012.0211 Harnessing Variable Renewables by Installation of Pumped
Hydropower Storage in Croatia 148
Biofuels and biorefineries I
SDWS2012.0319 Sustainable Bioethanol Production and Intensive Agricultural
Practices
SDWS2012.0082 Integration of Fischer-Tropsch Diesel Production with a Complex Oil
Refinery
SDWS2012.0150 Neural Network Modelling of Sugar Beet Juices Fermentation with
Different Starter Cultures 152
SDWS2012.0158 Biodiesel: Transesterification of Rapeseed Oil by Hydrotalcites 153
SDWS2012.0207 Study of the Heat Release Rate of Hcci Fuelled with Biodiesel
Combustion Using a Multizone Model Approach
SDWS2012.0304 Prospects for Alternative Energy Carriers Based on Biomass Sources
in EU-15 Up to 2050 155
Energy planning II
- 0710

SDWS201	2.0149 EROEI Index (Energy Return on Energy Investment): a New Meth	od
	to Qualify Energy Projects	157
SDWS201	2.0266 Integration of Temperature and Dust Effects in Solar Energy	
	Resource Assessment	158
SDWS201	2.0458 Modelling Energy Demand to 2050 in the EU Building Stock	159
SDWS201	2.0498 Context-Based Energy and Environmental Management System:	the
	Lifesaver Approach	
SDWS201	2.0350 Strategy of Sustainable Energy Development in EU – Monitoring	and
	Measurement of Economic Development and Renewable Energy Produc	
	Limitations	
Wastewate	r treatment	162
SDWS201	2.0064 Improvement of Nitrogen Removal in a Large Municipal Wastew	ater
	Plant	
SDWS201	2.0113 Biosorption of Zn(Li) from Aqueous Solution on Natural and	
	Modified Almond Shells.	163
SDWS201	2.0438 A Technical and Environmental Problems with Production of	
	Bitumen Materials: Toxicity, Environmental Aspects and Novel Technolo	gies
	of Bitumen Wastewater Treat-Ment.	
SDWS201	2.0525 Solution Equilibria and Adsorption Tendencies of Complexed Cu	
	in Mining Environment	
SDWS201	2.0513 Biosorption of Toxic Dyes Onto Grape Residue	
	2.0516 Removal of Heavy Metal from Aqueous Solution: Utilization of Pi	
	Needles as a Low-Cost Biosorbent	
Research		168
	2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for	
SDWS201	2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems	
SDWS201	2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on	168
SDWS201 SDWS201	2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100)	168
SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical 	168 169
SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 	168 169 170
SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 	168 169 170
SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an 	168 169 170 171
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 	168 169 170 171
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation 	168 169 170 171 172
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 	168 169 170 171 172
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy. 	168 169 170 171 172 173
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 Energy poli	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy. 	168 169 170 171 172 173 175
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 Energy poli	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a 	168 169 170 171 172 173 175 and
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 Energy poli	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a PV Solar Power 	168 169 170 171 172 173 175 and
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 Energy poli	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a PV Solar Power 2.0172 The Value of Supply Security: the Costs of Power Outages To 	168 169 170 171 172 173 175 and 175
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 Energy poli SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a PV Solar Power 2.0172 The Value of Supply Security: the Costs of Power Outages To Austrian Households, Firms and the Public Sector 	168 169 170 171 172 173 175 175 176
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 Energy poli SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy cy I 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a PV Solar Power 2.0172 The Value of Supply Security: the Costs of Power Outages To Austrian Households, Firms and the Public Sector 2.0200 Policies for Wind Power in Brazil 	168 169 170 171 172 173 175 175 176 177
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 Energy poli SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a PV Solar Power 2.0172 The Value of Supply Security: the Costs of Power Outages To Austrian Households, Firms and the Public Sector 2.0200 Policies for Wind Power in Brazil 2.0483 Strategies for Reducing Energy Consumption in a Student Cafete 	168 169 170 171 172 173 175 176 177 ria
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy. cy I 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a PV Solar Power 2.0172 The Value of Supply Security: the Costs of Power Outages To Austrian Households, Firms and the Public Sector 2.0200 Policies for Wind Power in Brazil 2.0483 Strategies for Reducing Energy Consumption in a Student Cafete in a Hot-Humid Climate: a Case Study 	168 169 170 171 172 173 175 176 177 ria 178
SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201 SDWS201	 2.0400 Pure Hydrogen/Oxygen Fuel Cell Performance Assessment for Closed-Loop Renewable Energy Systems 2.0129 Spectroscopic Investigation of NO and CO-Adsorbed CO, NO on Rh(100) 2.0225 Hydrogenation of Acrolein on Silver Surfaces-A Theoretical Approach 2.0584 Water Quality Evaluation of Vain Lagoon 2.0421 Technological Progress Towards a Hydrogen Economy: an International Patent Analysis 2.0583 The Turkish Strategy for the Governance of R&D and Innovation Towards Sustainable Energy 2.0485 Economic Benefits of Combined Technologies: Electric Vehicles a PV Solar Power 2.0172 The Value of Supply Security: the Costs of Power Outages To Austrian Households, Firms and the Public Sector 2.0200 Policies for Wind Power in Brazil 2.0483 Strategies for Reducing Energy Consumption in a Student Cafete 	168 169 170 171 172 173 175 176 177 176 177 ria 178 179

Regional planning and cooperation181
SDWS2012.0215 Regional Approach for a 100% Renewable Energy Systems: the Case
of South East Europe 181
SDWS2012.0140 Integration of a Large-Scale Company Within its Regional Supply
Chain Network 182
SDWS2012.0305 Interregional Cooperation and Perspectives of Energy Efficiency
Incentives in the Primorska Region183
SDWS2012.0395 Heritage of the Past vs. Guarantee for the Future: Planning Local
Sustainable Development on the Western Balkan
SDWS2012.0121 Bibliometric Analysis on International Collaboration in Clean Energy
SDWS2012.0078 Eco-Innovation for Promoting Green Economy: Innovation Policies
in the Transport Sector
•
Sustainable development188
SDWS2012.0050 Urban Renewal in Coimbatore City: Whither Sustainability? 188
SDWS2012.0576 Human Resources, Innovation and Sustainable Development 189
SDWS2012.0453 Phytoremediatory Effect of Ocimum Basilicum L. and its
Rhizosphere Exposed to Different Concentrations of the Organochlorine
Pesticide Endosulfan 190
SDWS2012.0414 The Clean Energy Industry in Brazil 191
SDWS2012.0179 Sustainable Economic Growth: a Perspective for Macedonia 192
SDWS2012.0195 Sustainable Architecture Inspired by Environment as Contemporary
Design Model for the 21st Century193
Renewable electricity generation systems I194
Renewable electricity generation systems I
Renewable electricity generation systems I
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195 SDWS2012.0191 Analysis of Energetic and Exergetic Efficiency and Environmental 195
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195 SDWS2012.0191 Analysis of Energetic and Exergetic Efficiency and Environmental Benefits of Biomass Integrated Gasification Combined Cycle Technology 196
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195 SDWS2012.0191 Analysis of Energetic and Exergetic Efficiency and Environmental 196 Benefits of Biomass Integrated Gasification Combined Cycle Technology 196 SDWS2012.0253 Performance Analysis of a Grid-Connected Six-Phase Induction Generator for Renewable Energy Generation 197 SDWS2012.0517 Performance of Locally Manufactured Small Wind Turbines for Rural 198 SDWS2012.0376 Theorical Comparison of a Horizontal Small Wind Turbine with Ball 199
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195 SDWS2012.0191 Analysis of Energetic and Exergetic Efficiency and Environmental 196 Benefits of Biomass Integrated Gasification Combined Cycle Technology 196 SDWS2012.0253 Performance Analysis of a Grid-Connected Six-Phase Induction Generator for Renewable Energy Generation 197 SDWS2012.0517 Performance of Locally Manufactured Small Wind Turbines for Rural 198 SDWS2012.0376 Theorical Comparison of a Horizontal Small Wind Turbine with Ball 199 Transport 201
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195 SDWS2012.0191 Analysis of Energetic and Exergetic Efficiency and Environmental 195 Benefits of Biomass Integrated Gasification Combined Cycle Technology 196 SDWS2012.0253 Performance Analysis of a Grid-Connected Six-Phase Induction Generator for Renewable Energy Generation 197 SDWS2012.0517 Performance of Locally Manufactured Small Wind Turbines for Rural 198 SDWS2012.0376 Theorical Comparison of a Horizontal Small Wind Turbine with Ball 199 Transport 199 SDWS2012.0461 Use of Carbon Calculation Tools for Sustainable Cycle Network 201
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195 SDWS2012.0191 Analysis of Energetic and Exergetic Efficiency and Environmental 196 Benefits of Biomass Integrated Gasification Combined Cycle Technology 196 SDWS2012.0253 Performance Analysis of a Grid-Connected Six-Phase Induction Generator for Renewable Energy Generation 197 SDWS2012.0517 Performance of Locally Manufactured Small Wind Turbines for Rural 198 SDWS2012.0376 Theorical Comparison of a Horizontal Small Wind Turbine with Ball 199 Transport 201 SDWS2012.0461 Use of Carbon Calculation Tools for Sustainable Cycle Network 201
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons 195 SDWS2012.0191 Analysis of Energetic and Exergetic Efficiency and Environmental 196 Benefits of Biomass Integrated Gasification Combined Cycle Technology 196 197 SDWS2012.0253 Performance Analysis of a Grid-Connected Six-Phase Induction 197 SDWS2012.0517 Performance of Locally Manufactured Small Wind Turbines for Rural 198 SDWS2012.0376 Theorical Comparison of a Horizontal Small Wind Turbine with Ball 199 and Magnetic Bearings on the Starting 199 Transport 201 SDWS2012.0539 The Feasibility of Synthetic Fuels in Renewable Energy Systems 202 201 SDWS2012.058 A Well-To-Wheel Analysis of Electric Vehicles in the All-Island Single Electricity Market 203
Renewable electricity generation systems I 194 SDWS2012.0455 Current Status of Small Hydropower Plants (SHP) Application in Southeast European Countries 194 SDWS2012.0573 Short Term Wind Speed Prediction Using Multi Layer Perceptrons

SDWS2012.0471 Assessment of Climate Change Mitigation Potential of the	
Macedonian Transport Sector 20	4
SDWS2012.0600 The Use of Numerical Simulation for Prediction of Pollutant	
Emissions in Diesel Engines	5
Energy policy II	
SDWS2012.0340 Dealing with the Paradox of Energy Efficiency Promotion by Electric	;
Utilities 20	7
SDWS2012.0107 Economic Assessment of Roof-Top Photovoltaic Potentials:	
Analyzing Efficiency Losses Due to Suboptimal Location Decisions	8
SDWS2012.0147 Energy Efficiency Road Mapping in Three Future Scenarios for Lao	
Pdr 20	9
SDWS2012.0144 A Time Extended Definition of Land Use as Metric for Sustainability	
, in Electricity Generation	
SDWS2012.0105 Policy Options Evaluation of Current Thermal Power Retrofit with	
CCS Technology	1
SDWS2012.0504 Consumers' Preferences Towards Financial Support Instruments for	
Residential Energy Efficiency	
	-
Buildings I21	4
SDWS2012.0419 Towards Zero Emission Buildings: the State-of-the-Art of National	
Regulations in Europe 21	4
SDWS2012.0145 Performance Implications of Heat Pumps Participating in Demand	
Side Management	5
SDWS2012.0446 Sensitivity Analysis for a Portuguese Windows Energy Rating Syster	n
(PWERS)	
SDWS2012.0582 Net-Zero Targets for Increasing Rational Exergy Management in	
Buildings and Districts	7
SDWS2012.0519 Esstimating the Marginal Cost and Environmental Effectiveness of	
the Climate Change Mitigation Measures in Public Buildings in Macedonia	
	8
	Č
Recycling waste21	9
SDWS2012.0371 An Alternative to Phosphorus - Ecological Sanitation as a Feasible	
Option in Agriculture	9
SDWS2012.0086 Thermolysis and Gasification of Scrap Prepreg	0
SDWS2012.0214 Valorisation of Two Inorganic Industrialwastes for Manufacturing	
Sulfur Polymer Concretes	1
SDWS2012.0228 Biodegradable Oil Waste as a Raw Material for Industrial	
Microbiology Processes	2
SDWS2012.0345 Use of Bof Steel Slag in Agriculture: Column Test Evaluation of	
Effects on Alkaline Soils and Drainage Water	3
SDWS2012.0531 An Environmental Friendly Recycling of Waste Toner Cartridges in	2
Republic of Croatia	Δ
	-
Environmental policy and practice22	6
SDWS2012.0152 Preliminary Study of OREEC (Organization of Rare-Earth Exportation	า
Countries)	

SDWS2012.0287 An Integrated Product Policy (IPP) Decision Approach for the	
Republic of Macedonia	
SDWS2012.0397 Environmental Injustice Among Flood-Affected Gypsies - Case Stu	
on North-Hungarian Villages	228
SDWS2012.0408 Assessment of Climate Change by Statistical Process Control	
Methods	
SDWS2012.0062 Investigating the Impacts of Winds on SO_2 Concentrations in Bor,	
Serbia	
SDWS2012.0318 Strategic Environmental Consideration of Nuclear Power	230
Water system analysis2	232
SDWS2012.0502 Improving National Water Management Efficiency for Sustainable	
Future by Technology Development in Korea	
SDWS2012.0518 Application of the New Sanitary Protection Zone Legislation in	
Serbia Case Study: Pancevo Water Supply System	233
SDWS2012.0478 Soil Moisture and Evapotranspiration Assessed from Remote	
Sensing for Sensitive Ecosystem	234
SDWS2012.0013 Possibilities for Energy Efficiency Improvement at Municipal	
Wastewater Treatment Plants	235
SDWS2012.0080 Groundwater Balance, Natural Recharge and Drainage Zones at	
Open Pit Mine "Polje E" of Kolubara Coal Basin (Republic of Serbia)	236
SDWS2012.0176 Costs Analysis of the Priority Order of Water Demands from an	
Exergy Perspective. Application to a Spanish River	227
Biofuels and biorefineries II2	239
Biofuels and biorefineries II	239
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus	239
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus	239 3y:
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energ	239 gy: 240
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus	239 gy: 240
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus	239 gy: 240 241
 SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energ Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical 	239 gy: 240 241 242
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus	239 gy: 240 241 242 the
 SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energ Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants 	239 gy: 240 241 242 the 243
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus	239 gy: 240 241 242 the 243 243
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus	239 gy: 240 241 242 the 243 243
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants Cogeneration and district heating 2 SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0193 Potential of ORC Systems to Retrofit CHP Plants in Wastewater	239 gy: 240 241 242 the 243 245 245
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus 2 SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges 2 SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps 2 SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants 2 SDWS2012.0348 Optimal Operation of a District Heating System 2 SDWS2012.0193 Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations 2	239 gy: 240 241 242 the 243 245 245 245
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0193 Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations SDWS2012.0288 Optimization of Cogeneration Power Plant Operation Coupled with	239 gy: 240 241 242 242 243 245 245 246 th
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0193 Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations SDWS2012.0288 Optimization of Cogeneration Power Plant Operation Coupled wit Heat Storage Tank Used for District Heating of Zagreb Area, Croatia	239 gy: 240 241 242 242 243 245 245 246 th
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0193 Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations SDWS2012.0288 Optimization of Cogeneration Power Plant Operation Coupled wit Heat Storage Tank Used for District Heating of Zagreb Area, Croatia SDWS2012.0313 Afterburning Installation of 2xST 18 Cogeneration Power Plant -	239 gy: 240 241 242 243 245 245 245 246 th 247
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0193 Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations SDWS2012.0288 Optimization of Cogeneration Power Plant Operation Coupled wit Heat Storage Tank Used for District Heating of Zagreb Area, Croatia SDWS2012.0313 Afterburning Installation of 2xST 18 Cogeneration Power Plant - Theoretical and Experimental Analysis	239 gy: 240 241 242 243 245 245 245 245 246 th 247 248
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0348 Optimal Operation of Cogeneration Power Plant Sin Wastewater Treatment Stations SDWS2012.0288 Optimization of Cogeneration Power Plant Operation Coupled with Heat Storage Tank Used for District Heating of Zagreb Area, Croatia SDWS2012.0313 Afterburning Installation of 2xST 18 Cogeneration Power Plant - Theoretical and Experimental Analysis SDWS2012.0070 Optimization of Binary Co-Generative Thermal Power Plants with	239 gy: 240 241 242 243 245 245 245 246 th 247 248
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0193 Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations SDWS2012.0288 Optimization of Cogeneration Power Plant Operation Coupled wit Heat Storage Tank Used for District Heating of Zagreb Area, Croatia SDWS2012.0313 Afterburning Installation of 2xST 18 Cogeneration Power Plant - Theoretical and Experimental Analysis SDWS2012.0070 Optimization of Binary Co-Generative Thermal Power Plants with SOFC on Solid Fuel	239 gy: 240 241 242 243 245 245 245 246 th 247 248
SDWS2012.0272 Energy Analysis of Bioethanols Produced from Dendrocalamus Latiflorus SDWS2012.0434 A Citrus Waste Based Biorefinery as a Source of Renewable Energy Technical Advances and Analysis of Engineering Challenges SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0436 Integreated Model for Eco-Sustainability of Biodiesel Production 2 SDWS2012.0524 Evaluating the Energy and Carbon Sequestration from Tropical Acacias: the First Steps SDWS2012.0122 The Benefit Evaluation for Co-Constructed and Co-Production by First and Second Generation Ethanol Plants SDWS2012.0348 Optimal Operation of a District Heating System SDWS2012.0348 Optimal Operation of Cogeneration Power Plant Sin Wastewater Treatment Stations SDWS2012.0288 Optimization of Cogeneration Power Plant Operation Coupled with Heat Storage Tank Used for District Heating of Zagreb Area, Croatia SDWS2012.0313 Afterburning Installation of 2xST 18 Cogeneration Power Plant - Theoretical and Experimental Analysis SDWS2012.0070 Optimization of Binary Co-Generative Thermal Power Plants with	239 gy: 240 241 242 243 245 245 245 245 245 245 245 245 245 245

Sustainability comparisons and measurements methodologies251
SDWS2012.0079 Environmental Impact of Soil Remediation Activities: Evaluation of
Quantitative and Qualitative Tools
SDWS2012.0303 Defining Sustainability Indicators of Iron and Steel Production 252
SDWS2012.0430 Analysis of the Sustainability Reporting Initiatives of Electric Utilities
in Brazil
SDWS2012.0182 Methodology for Sustainability Assessment and Resource Efficiency
in Forest Sector
SDWS2012.0594 Organizational Attention Deficit as Sustanability Indicator:
Assessment and Management 254
SDWS2012.0316 Evaluating Sustainability in the Flemish Dwelling Construction Sector
Energy efficiency; in industry and mining, appliances257
SDWS2012.0183 Improvement of the Energy Use and Comfort Conditions in Offices
by Real-Time Feedback Actuations. Living-Lab Testing
SDWS2012.0053 The Impact of Smart Metering to Energy Efficiency in Low-Income
Housing in Mediterranean
SDWS2012.0072 Development of a New Gas Screw Compressors Family, with High
Delivery Pressure (up to 45 bar)
SDWS2012.0501 Techniques for Establishing and Maintaining Constant Temperature
in ICT Systems in Order to Reduce Energy Consumption
SDWS2012.0028 Potential for CO_2 Emission Reduction in the Cement Industry 261
SDWS2012.0028 Fotemation CO_2 Linssoft Reduction in the Centern industry 201 SDWS2012.0598 Investigation of Energy Efficiency Potentials of the Macedonian Pig
Sector and Their Practical Implementation's
Waste management263
Waste management 263 SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
 SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas. 263 SDWS2012.0418 Analyses of Environmental Impacts of non Hazardous Regional Landfills in Macedonia 264 SDWS2012.0377 Thermogravimetry as a Research Method in the Transformation Processes of Waste Rubber and Plastic Products for Energy Carriers (WTE and WTL Processes). 265 SDWS2012.0578 Terrestrial and Underwater Pollution Monitoring Using High- Resolution Electromagnetic Sensors 266 SDWS2012.0515 Pyrolysis of Municipal Solid Wastes in Thermogravimetric Analyzer
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas. 263 SDWS2012.0418 Analyses of Environmental Impacts of non Hazardous Regional Landfills in Macedonia 264 SDWS2012.0377 Thermogravimetry as a Research Method in the Transformation Processes of Waste Rubber and Plastic Products for Energy Carriers (WTE and WTL Processes). 265 SDWS2012.0578 Terrestrial and Underwater Pollution Monitoring Using High- Resolution Electromagnetic Sensors 266 SDWS2012.0515 Pyrolysis of Municipal Solid Wastes in Thermogravimetric Analyzer
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas. 263 SDWS2012.0418 Analyses of Environmental Impacts of non Hazardous Regional Landfills in Macedonia 264 SDWS2012.0377 Thermogravimetry as a Research Method in the Transformation Processes of Waste Rubber and Plastic Products for Energy Carriers (WTE and WTL Processes). 265 SDWS2012.0578 Terrestrial and Underwater Pollution Monitoring Using High- Resolution Electromagnetic Sensors 266 SDWS2012.0515 Pyrolysis of Municipal Solid Wastes in Thermogravimetric Analyzer
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas
SDWS2012.0201 Environmental Performance of the Municipal Solid Waste Collection System for Sustainable Services in Urban Areas

SDWS2012.0130 The Joint Effort Toward Developing Vertical Axis Wind Turbine Industrial Standard for Taiwan and China	272
Renewable electricity generation systems II	
SDWS2012.0470 Effect of Working Fluids on Organic Rankine Cycle for Geotherm	
Power Plant "Lunjkovec-Kutnjak"	
SDWS2012.0289 Costs of Electricity Generation from Different Sources for Small-	
Scale Rural Production in the Northeast Region of Brazil	
SDWS2012.0164 Analysis of Photovoltaic Potential in Urban Areas: the Effect of t	
Eurozone Financial Crisis	
SDWS2012.0402 Design and Optimization of a Hybrid Wind-Photovoltaic Stand-A	
System for Tunnel Lighting	
SDWS2012.0587 Wind Farm Monitoring Based on Computer Vision and Laser Op	
Measurement Systems	. 278
Primary energy resources	280
SDWS2012.0482 New Nuclear Power Programs – Guidance and Experience	. 280
SDWS2012.0265 Improvement of Existing Coal Fired Thermal Power Plants	
Performance by Control Systems Modifications	
SDWS2012.0439 Synergy Effects of Co-Combustion Coal with Wooden Biomass a	t
110 MWe Power Station Kakanj Unit 5	
SDWS2012.0018 Adaptation of Bacteria of Anaerobic Digestion to Higher Salinity	
the Application to Microbial Enhanced Oil Recovery	
SDWS2012.0015 Groundwater Remediation in Cold Regions	
SDWS2012.0244 A Micro CHP Solution Based on a Micro Gas Turbine	. 285
Buildings II	286
SDWS2012.0056 Time Trends of and Effects of Global Climate Chang on Resident	
Energy Consumption and Emissions of Pollutants	
SDWS2012.0335 From a Pilot Building to a Self Sustainable Energy Campus	
SDWS2012.0332 Renewable Energy and Hydrogen Production for an Energy Self-	
Sufficient Building in Local Government	
SDWS2012.0568 Improving the Thermal Performance of the Transparent Building	
Envelope: Finite Element Analysis of Possible Techniques to Reduce the	U-
Value of the Glassblocks	. 288
Water recourses	200
Water resources	
SDWS2012.0333 New Architectural Points to increase Dew Conection	. 290
Resources Management	201
SDWS2012.0132 Water Resources Analysis in Alto Aragón in the First Decade of t	
21st Century: Water Demand, Efficiency and Productivity.	
SDWS2012.0269 Triple Win Strategy for Reservoir Watershed Management by G	
Theory	
SDWS2012.0242 Renewable Energy Powered Natural Vacuum Technique for	292
Seawater Desalination	202
SDWS2012.0532 Tamis Water Resources, Related Ecological and Environmental	293
Problems and Perspectives	294
	- 20+

Application of the new sanitary protection zone legislation in Serbia Case study: Pancevo water supply system

Ivan D. Matic Department of Hydrogeology Faculty of Mining and Geology, University of Belgrade, Belgrade, Serbia e-mail: ivan.matic@rgf.bg.ac.rs

Slobodan O. Vujasinovic, Jelena L. Zaric^{*} Stanko D. Sorajic, Nenad M. Maric Faculty of Mining and Geology, University of Belgrade, Belgrade, serbia e-mail: jelena_zaric@live.com

ABSTRACT

Beside the fact that Serbia still possesses significant reserves of high quality water, the state of groundwater protection and quality is altogether inadequate. The main cause of numerous problems in this area has been the lack of adequate law regulations for years.

By bringing new law regulations in the area of determining sanitary protection zones of sources for drinking water supply from 2008, a large step was made. A good example of a quality approach to determining a sanitary protection zone for water supply is the source for water supply of the city of Pančevo. Although determining the SPZ of this source had begun before the arrival of new law regulations, this solution represents an important step forward in this area and adheres to the new regulations. Mentioned case is an example of good practice and a correct approach to solving the problem of determining sanitary protection zones of water supply sources. In the transition period, accepting new laws, example of the Pančevo groundwater source, indicates that finding the optimal solution lies in combining experience and expertise. A pure implementation of laws, without adaptation to specific situation, is almost impossible when the specificity of each individual case is kept in mind. Aim of this paper is to provide insight into problems which follow determining sanitary protection zones of water supply sources in Serbia.

Key words: groundwater, protection, sanitary protection zone, legislation

INTRODUCTION

Groundwater is used in approximately 80% of all cases for providing drinking water in settlements on the territory of Serbia. They are tapped from all types of aquifers: intergranulary in alluvial and terrace deposits, artesian aquifers of neogene basins, and finally karst and fracture aquifers. Beside the fact that Serbia still possesses certain deposits of aquifer waters that represent real natural reserves of high quality water, with favorable conditions for protection, the state of groundwater protection and quality is altogether

^{*} Corresponding author

inadequate. The main cause of numerous problems in this area has been the lack of adequate law regulations for years. According to monitoring data in the period of 2007 to 2011, the quality of raw tapped water at most of the sources was satisfactory according to valid rulebooks about drinking water quality, but monitoring of all of the sources is not preformed regularly. In 2007, 155 central water supplies were controlled on the territory of Serbia, physical-chemical irregularity was registered in more than 20% of the tested samples, that is to say, 39% of the controlled water supply systems, while 29% of the water supply systems had simultaneous physical-chemical and microbiological irregularities. Of the 128 tested sources in 2011, only 36 had a completed Report about zones of sanitary source protection.

PROBLEMS OF DETERMINING ZONES OF SANITARY PROTECTION FOR WATER SUPPLY SOURCES

When determining the sanitary protection zones (SPZ) around the water intake of groundwater, the basic question arises of hydrogeological methodology and criteria necessary for implementation when determining the position and scale of the zones is in question. Different natural hydrogeological and hydrodynamic conditions that are present from source to source negate the possibility of creating a template when determining the position of protection zones. This is best seen in the fact that the geological and hydrogeological characteristics of individual soils differ and those differences must be taken into account under specific conditions.

The problem of determining SPZs is even more complicated if the subject source is already under the influence of existing pollutants. The protection of groundwater of a certain source from pollution does not necessarily entail only water intake protection. It is a much more complex problem than determining the administrative zones around the objects themselves. In short, it can be said that the protection of a certain groundwater source entails "controlling" a much wider territory than that from which it is possible to directly or indirectly negatively influence the quality of the given source. The primary impact is, before all, anthropogenic activity and influence which arises as a result of those activities. All of those influences must be viewed and neutralized regardless of the distance from the source. For example, an alluvial source located alongside a river can be endangered due to a pollution hotspot located tens or hundreds of kilometers upriver. The complexity of the given problem is especially notable when the protection of alluvial sources near large rivers is in question, because the question of protecting the entire river flow and the entire water basin from pollution is raised. When determining sanitary protection zones, it is necessary to completely view the hydrogeological characteristics of the environment and hydrodynamic conditions of groundwater flow. If the source is endangered by a pollutant, it is crucial to define the conditions at the source of pollution, as well as the physical-chemical processes of interaction between the contaminating matter and the geological environment. Regardless of the complexity of the given problem matter, the Rulebook about the method of determining and maintaining zones and strips of sanitary protection of structures for drinking water supply (Official gazette SRS, no. 33/78), which was valid until 2008 when determining SPZs took into account the distance of the zone from the water intake[1].

International law regulations, however, have the estimated "time of travel" of the potential polluting matter as a primary criterion. Processes of "mass change" of the contaminating matter are also taken into account (number of calculations equals the number of contaminating matter). According to this criterion, it is primary to find the distance (contour distance) from the water intake from which an eventual appearance of pollution will be neutralized while underground (T), having in mind the speed of groundwater movement in aquifers. Complete disappearance (effect of microorganisms) is taken into account, as well as the transformation in to harmless products or influences only when the foreseen work period of the water intake is over. This is why T has a wide scope of 5 days to 50 years (this last value most commonly in Russian hydrogeological practice).

In the past years, in the EU, when determining zones of sanitary protection in karst sources, it is mandatory to complete a so-called Map of vulnerability or a Map of endangerment of the given area. These maps, combined with the maps of potential contaminating matter for groundwater, help to identify possible risks. The identification and evaluation of risk is necessary for undertaking measures against the pollution of water supply plants, along with the previously determined SPZ. Serbia is the first country in the region for which a vulnerability map of groundwater on a national level was completed (1:500 000), which gives a good foundation for future spatial planning, as well as preventive protection of the most significant water resources, regardless of the national scale.

By bringing new law regulations in the area of determining sanitary protection zones of sources for drinking water supply from 2008, a large step was made. On the other hand, putting this regulation into effect has created difficulties in practice, which is especially true for the application of new regulations on existing sources. Many of these sources have been in function for years or decades and their environment has been notably changed. Intensive urbanization and industrialization have made the determination of SPZs in accordance with the new regulations difficult.

Still, a good example of a quality approach to determining a sanitary protection zone for water supply is the source for water supply of the city of Pančevo. Although determining the SPZ of this source had begun before the arrival of new law regulations, this solution represents an important step forward in this area and adheres to the new regulations in great measure. Due to this, the groundwater source of Pančevo will be presented in this work as a successful example of the protection of a water supply source in Serbia and under conditions of a large influence of the urban environment as well as a large number of potential pollutants.

CASE STUDY – PANCEVO ROUNDWATER SOURCE

The city of Pančevo as one of the largest industrial centers in the Republic of Serbia has great problems with environmental protection. Cases of aero pollution are especially common due to a developed petrochemical industry. Along with that, during the NATO bombing of Serbia,

the city and wider area went through an ecological disaster, so immense soil and groundwater pollution within the industrial zone occurred.

The source from which the city taps drinking water is made up of three entities that take up the right bank of the Tamiš and left bank of the Danube rivers ("Sibnica", "Filter" and "Gradska šuma") that have a total capacity of 500-600 l/s Fig. 1.

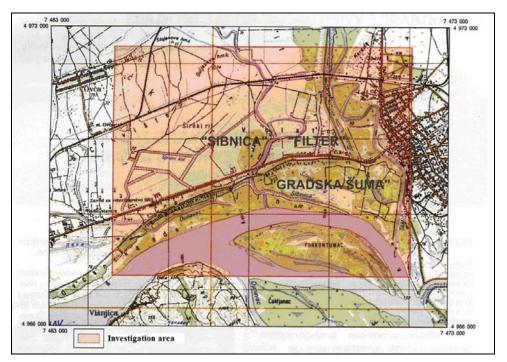


Figure 1. Geographical position of the investigation area [2]

Ongoing problems of water supply are mostly connected to the heightened capacity of the source, that is to say, the quickened well aging (lowered discharge). Although the water quality did not represent a problem in the past, as can be seen through the newest analyses, the source is jeopardized due to several factors. The fact that a large part of the source is located in the Belgrade municipality of Palilula represents an additional problem, so a conflict of interests exists.

As a foundation for determining the sanitary protection zones based on hydrogeological (hydrodynamic) criteria during 2002, hydrogeological investigations were undertaken. In the scope of these investigations, specific detailed geological and hydrogeological mapping of the terrain was performed, as well as identifying all of the pollutants, forming a monitoring network for changes in groundwater and surface water levels. Monitoring of changes in groundwater and surface water levels in the period of one year (one hydrological cycle) was performed from all of the monitoring structures. Samples were taken periodically from the groundwater of representative wells from all three sources, as well as surface waters and river sediments of the Tamiš, Sibnica rivers and channel in "Gradska šuma". As a result of all of

these investigations, a hydrogeological simulation model of the investigation area was performed based on which the hydrogeological parameters were defined, along with the borders of the sources in plan and profile, directions and speed of groundwater flow and determining the sanitary protection zone, as well as a presentation of the existing and potential pollutants in the wider protection zone.

HYDROGEOLOGICAL SIMULATION MODEL OF THE WATER SUPPLY SOURCE OF PANCEVO

The simulation of aquifer dynamics under current and future conditions of aquifer water exploitation from the source of Pančevo city was completed in a hydrogeological simulation model which was performed based on a geological and hydrogeological terrain model. The geological terrain model, made only for the needs of a mathematical model, took up the area containing alluvial deposits of the left bank of the Danube and right bank of the Tamiš rivers up to a depth of 60m. The model encompasses an area of approximately 70km² and takes up the left side of the Danube all the way to the Tamiš delta. The southern border of the model is represented by the Danube, while the eastern border is the river Tamiš. In the north, the model encompasses parts of Jabučki rit, and spreads to the Reva pond and Ovča railway station in the east. The total area of the model has been quantified with 15000 rectangular elements. The size of the elements, or rather the thickness of the net varies depending on the expected hydraulic gradients. The net is thicker in areas of the future exploitation, that is to say, in areas of steeper gradients Fig. 2 [3].

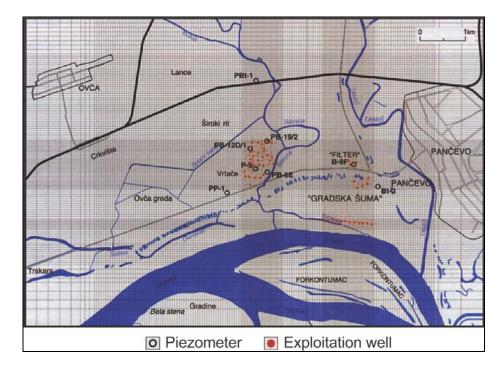


Figure 2. Discretization net of the hydrogeological model with border conditions

Vertically viewed, the model has been quantified as a three-layered porous environment. The first environment, or first layer, represents an overlaying layer of the water bearing horizon. The thickness of these overlaying sediments varies from 2 to 7m. The filtration coefficient of these sediments varies within borders of $3*10^{-6}$ do $1*10^{-7}$ m/s. The second environment is represented by sands and clayey sand in places. These sediments represent the main exploited water bearing layer. The thickness of these sediments moves in limits of 22 to 44m. The calibration size of the filtration coefficient for this environment in the whole area of the model is in borders of $1.5*10^{-4}$ do $5*10^{-4}$ m/s. the third environment is represented by clays that are the water impermeable base of the water bearing sediments.

The completion, calibration and verification of the mathematical hydrogeological model were completed in two phases. Within the first phase of the model, the dynamics of the aquifer in current exploitation conditions was simulated. The aim of this simulation was obtaining piezometric levels that match the conditions of July and August 2002, and their accordance with the measured data. The hydrogeological model of the current state, as a result of the first phase, has served as a beginning model when completing the second phase model, or rather, simulation of the aquifer dynamics when exploiting 1000 l/s. Having in mind that an adequate accordance between the measures and piezometric levels obtained through the mathematical model was achieved; this model can serve as a simulation for the aquifer dynamics in different exploitation conditions.

DETERMINING THE SANITARY PROTECTION ZONE OF THE PANCEVO SOURCE

Although it wasn't required by the Rulebook of the time, when determining the sanitary protection zone of the Pančevo source, other parameters of the environment were taken into account, and not only the distance of the zone border to the water intake structure. The lack of an adequate Serbian law regulation conditioned the use of foreign experiences in this problem. For defining the sanitary protection zone, time of travel data was used (TOT) of the ideal particle from the recharge area to the exploitation wells themselves or the complete source, defined by the U.S. Environmental Protection Agency – EPA. As an example of the law regulations in this area in countries from the region, the "National program of groundwater protection in Hungary" was used.

Determining the sanitary protection zones of the Pančevo source was completed based on general hydrogeological, geomorphological, hydrological conditions, the geological-hydrogeological mathematic model, as well as based on the sanitary protection zones defined by EPA. The inner area of sanitary protection was defined for all three sources separately, for: "Sibnica", "Filter" and "Gradska šuma" as presented in figure 3. The inner sanitary protection zone for the "Sibnica" source was determined based on the time of travel of the ideal particle, lasting 250 days. The inner sanitary protection zone for the "Filter" source is somewhat wider in relation to the time of travel of the ideal particle lasting 250 days, so it spreads to the embankment in the east and to the Pančevo-Belgrade road in the west. A part of this inner belt is inside a zone of the constant pollution of an unhygienic settlement. The inner zone of

sanitary protection of the new "Gradska šuma source" is bordered by embankments, which naturally represent border lines of the inner sanitary protection zone.

For the exact definition of the wider sanitary protection zone, a map with isochrones for 1000 l/s exploitation was used, while we took isochrones 5 years in the north and 50 years in the east and west Fig. 3 [3].

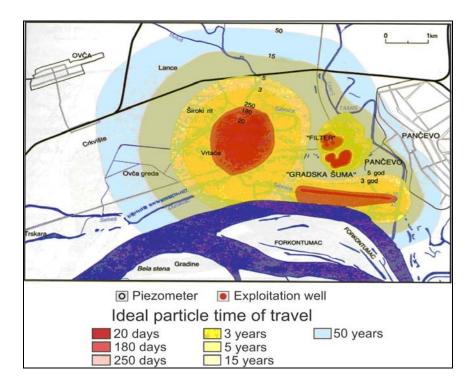


Figure 3. Map of the isochrones of Pančevo's groundwater: "Sibnica", "Filter" and "Gradska šuma" (exploitation 1 000 l/s)

However, to limit the area of the wider sanitary protection zone having only these isochrones in mind is not enough without viewing the hydrogeological, geomorphological and hydrological conditions within the source itself and its surroundings. Due to this, the wider sanitary protection zone encompasses a somewhat greater area Fig. 4. The eastern border of the wider sanitary protection zone is represented by the Tamiš river, the southern by the Danube and the western by an imagined line that follows the local road from the railway to the highway, cuts the Sebeš channel and goes along the Danube. The northern border is located approximately 100m north of the Pančevo – Belgrade railroad and follows the tracks.



Figure 4. Sanitary protection zone of the Pančevo source

NEW RULEBOOK ABOUT GROUNDWATER SOURCE SANITARY PROTECTION ZONES FOR WATER SUPPLY

The need for improving the law regulations in this area and the complete adaptation of our law regulations with EU standards have led to the accepting of a new Rulebook about the method of determining and maintaining sanitary protection zones for water supply ("Official gazette RS, no. 92/2008) [4].

The new rulebook, beside the distance of the water intake structure from the protection zone, takes into consideration the time of filtration that the water spends underground. As an important factor of soil and groundwater interaction, and groundwater self-purification, the hydrogeological environment is analyzed. Through the specificity of all of the environments; karst, fracture and intergranularly porous environments are treated separately. The time of infiltrated water propagation for the second zone of sanitary protection in a porous environment of an intergranulary type takes up 50 days, while it takes one day in a porous environment of a karst-fracture type. In conditions of an aquifer under pressure, or the existence of a protective layer that neutralizes the impact of pollutants from the surface of the terrain, the second zone is based on the second, and the third on the second. On the other hand, areas of high water intake, such as sink-holes, chasms and faults as very vulnerable are placed in the first zone of sanitary protection.

Without entering individual clauses of this Rulebook, it can be said that its arrival, the law regulations in the area of groundwater protection for water supply have been notably improved and that they are completely in accordance with the recommendations and valid rulebooks of the EU in this area. On the other hand, the question of the possibility of applying these new rules on existing sources, which have been functioning for years, is posed.

CONCLUSION

Accepting the directives and recommendations of the EU has resulted in bringing new laws in the area of environmental protection and managing natural resources. The Rulebook about sanitary protection zones of water supply sources has been significantly improved in regards to the old one. It reflects the knowledge stemmed from practice to date, and has been completed with regards to valid rulebooks of other countries.

Beside the great improvement in view of bettering regulations, engineers still encounter the same problems. The development of industry and the spread of cities are commonly obstacles to a throughout implementation of the laws in this area. Beside that, the combination of conditions that are present at the source itself, as well as all the other factors that directly or indirectly impact it, make every case different, which further implies the necessity for new, unique solutions.

The example of the Pančevo source, although completed before the application of the new Rulebook, is an example of good practice and a correct approach to solving the problem of determining sanitary protection zones of water supply sources. Today, this task is greatly eased for hydrogeological experts, having the improvement of regulations in mind, but still requires their engagement in all phases of projecting, performing and completing source monitoring.

Generally, the laws and regulations in all areas, are mostly adapted to EU standards, but that is only part of the work. Their future implementation and work on the remediation of past bad practice is a more difficult task. Having that in mind, including hydrogeological experts in all phases of projecting, completing and monitoring sources may be more important than "blindly" following the new regulations. In the transition period, accepting new laws, example of the Pančevo groundwater source, indicates that finding the optimal solution lies in combining experience and expertise. A pure implementation of laws, without adaptation to specific situation, is almost impossible when the specificity of each individual case is kept in mind.

Urbanization and industrialization are inescapable in the time we live in, while at the same time the necessity for environmental and natural resources imposes itself. The environment and all of the activities within it should be regarded as dynamic processes and followed, through adequate monitoring systems, in the aim of solution optimization and preventing excess situations.

REFERENCES

- 1. Rulebook about the method of determining and maintaining zones and strips of sanitary protection of structures for drinking water supply, *Official gazette SRS*, No. 33, 1978.
- 2. Ivan, M. and Mića, M., Study on water protection of Pancevo water sources, *University of Belgrade, Faculty of Mining and Geology, Department of hydrogeology*, 2009.
- 3. Ivan, M., Mića, M. and Slobodan, V., Determination of the Zones of Sanitary Protection of Groundwaters of Pancevo Water Supply Source, *Water and Sanitary Technique*, No. 4, pp 17-28, 2005.
- 4. Rulebook about the method of determining and maintaining sanitary protection zones for water supply, *Official gazette RS*, No. 92, 2008.