L'Union Médicale Balkanique
Balkan Medical Union

Balkanska Medicinska Unija

32nd Balkan Medical Week
32ème Séménaire Medicale Balkanique

21-23. September 2012
University of Nis
Nis, Serbia
32nd BALKAN MEDICAL WEEK - Nis, SERBIA
32eme SEMAINE MEDICALE BALKANIQUE - Nis, SERBIA

OFFICERS OF THE BALKAN MEDICAL UNION

International Secretary General: professor Vasile Cândea, Romania

Albania: Prof. Ylli Ppa, President, Tirana
 Prof. Mentor Petrela, Secretary General, Tirana

Bulgaria: Prof. Venko Alexandrov, President, Sofia
 Prof. Fanny Ribarova, Secretary General, Sofia

Cyprus: Dr Vassos Lyssarides, President, Nicosie
 Dr Kaya Bekiroglu, Vice-president, TRNC

Greece: Prof. Niki Agnantis, former president, Ioannina
 Prof. Ioannis Karaitianos, President, Athens
 Dr Anastasios Thanos, Secretary General, Athens

Republic of Moldova: Prof. Gheorghe Ciobanu, President, Chisinau
 Prof. Minodora Mazur, Secretary General, Chisinau

Romania: Prof. Nicolae Angelescu, President, Bucarest
 Prof. Vasile Burlui, Vice-president, Iasi
 Prof. Ioan Lascăr, Vice-president, Bucarest
 Prof. Mircea Grigorescu, Vice-president, Cluj
 Dr Ioan Ieșcu, Vice-president, Suceava
 Adriana Milea, Executive Director

Serbia: Prof. Vladmila Bojanić, President, Niš
 Prof. Snažana Jančić, Secretary General, Kragujevac

Turkey: Prof. Somer Ones, former president, Istanbul
 Prof. Sabri Ergüney, President, Istanbul
 Prof. Ali Haydar Taspinar, Vice-president, Istanbul
 Prof. Ertugrul Gazioglu, Treasurer, Istanbul
ORGANISING COMMITTEE:

President: Prof. Bojanić V,
Prof. Dindić B
Doc. Bojanić Z
Prof. Šmeleerović A
Prof. Savić T
Prof. Najman S
Prof. Sokolović D
Prof. Milojković M
Doc. Lazović M
Adriana Milea

SCIENTIFIC COMMITTEE

CHAIRMAN OF THE SCIENTIFIC COMMITTEE - PREDSEDNIK NAUČNOG ODBORA

MEMBERS OF THE SCIENTIFIC COMMITTEE - ČLANOVI NAUČNOG ODBORA

Prof. dr Vasil Candea
Prof. dr Yves Julliet
Prof. Emmeritus Niki Agnantis
Prof. Emmeritus George Chaldakov
Prof. dr Milorad Mitković
Prof. dr Vladislav Stefanović
Prof. dr Dušica Pavlović
Prof. Fanny Ribarova
Prof. dr Marina Deljanin Ilić
Prof. dr Snežana Jančić
Prof. dr Slobodan Janković
Prof. dr Stevo Najman
Prof. dr Dragan Đurić
Prof. dr Vladimila Bojanić
Prof. dr Vlada Janković
Doc. dr Zoran Bojanić
Prof. dr Dusica Stojanovic
Prof. dr Stojan Radić
Prof. dr Sonja Radenković
P64 6-(propan-2-yl)-3-methyl-morpholine-2,5-dione, a novel xanthine oxidase inhibitor

Šmelcerović Ž¹, Yancheva D², Daskalova L², Cherneva E¹, Šmelcerović A², Petronijević Ž³, Kocić G¹
¹Center for Biomedical Science, Faculty of Medicine, University of Niš, Niš, Serbia
²Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
³Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
⁴Department of Chemistry, Faculty of Medicine, University of Niš, Niš, Serbia
⁵Faculty of Technology, University of Niš, Leskovac, Serbia
⁶Institute of Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia

Introduction. Cyclodepsipeptides are known to exhibit a broad spectrum of biological activities and present a great potential for pharmacological application. A novel didepsipeptide member of the family 6-(propan-2-yl)-3-methyl-morpholine-2,5-dione, was synthesized and its structure was confirmed by IR,¹ H and ¹³C NMR spectral data.

Aims. In the present study the above mentioned compound was evaluated for inhibitory activity against commercial enzyme xanthine oxidase (XO) in vitro.

Methods. Bovine milk XO activity was assayed spectrophotometrically by measuring the uric acid formation from substrate xanthine.

Results. A significant inhibitory activity of the studied cyclodepsipeptide on XO was observed. The inhibition occurs in a dose-dependent manner.

Conclusions. 6-(Propan-2-yl)-3-methyl-morpholine-2,5-dione may give a promise to be used in treatment of gout and related primary or secondary hyperuricemic conditions.

Keywords: cyclodepsipeptides, 6-(propan-2-yl)-3-methyl-morpholine-2,5-dione, xanthine oxidase inhibition

Acknowledgments: The financial support of this work by Ministry of Education and Science of the Republic of Serbia (Grant No. 172044) and National Science Fund of Bulgaria (young researchers project DMU-03/66) is gratefully acknowledged.

P65 Comparative analysis of the antigenotoxicity of five selected 4-hydroxy-2H-chromen-2-one derivatives: possible mechanism of action

Matić S¹, Stanić S¹, Solujić S¹, Stanković N², Mladenović M², Mihailović V²
¹Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
²Department of Chemistry, Faculty of Science, University of Kragujevac, Serbia

Introduction. Coumarin and coumarin-related compounds have proved for many years to have significant therapeutic potential. A large number of 4-hydroxycoumarins and their derivatives have been synthesized and evaluated for their ability to play a positive role in the prevention of human and animal diseases. Still, their antigenotoxic potential is unknown.

Aim. In the present study we examined the capability of five substituted 4-hydroxy-2H-chromen-2-one derivatives to counteract genotoxicity induced by the ethyl methanesulfonate (EMS), well-established chemical mutagen, using the sex-linked recessive lethal (SLRL) test on Drosophila melanogaster under in vivo conditions. In addition, the molecular docking experiments were performed to obtain the binding mode of coumarin compounds into deoxyribonucleic acid (DNA) and to investigate possible mechanism(s) of antigenotoxic action of selected 4-hydroxycoumarin derivatives.

Methods. Three days old Canton S males were treated with the potent mutagen EMS alone, at a concentration of 0.75 ppm, as well as in combination with one of the five 4-hydroxycoumarins, namely diethyl 2-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene)malonate (2b), 3-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene)malonate (2c), 3,5-dihydroxy-2-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene)malonate (2d), 3,5-dihydroxy-2-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylenedioxy)methane (2e), and 3-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylenedioxy)methane (2f), in order to analyze the effects of treatment on sex-linked recessive lethal (SLRL) test.
Results. The frequency of germinative mutations increased significantly after the treatment with EMS and decreased after post-treatments with coumarins. The maximum reduction was observed after post-treatments with 2b, 6b, 4c, and 5d. By the formation of hydrogen bonds or electrostatic interactions with DNA guanine, tested coumarins prevent EMS induced alkylation.

Conclusion. The results indicate, in addition to its well documented action on development, a protective effect of five 4-hydroxyxoumarins under the action of a strong mutagen, such as EMS.

Keywords: Antigenotoxicity; Drosophila melanogaster; 4-hydroxyxoumarins

Acknowledgments: This study was financially supported by the Serbian Ministry of Education and Science of the Republic of Serbia, Grants No. III43004 and II41010.

P66 Pharmaceutical care – the right way for professionalism

Ivankovska V1, Andreevska K2, Grekova D3, Dimitrov M4
1Faculty of Pharmacy, Medical University, Sofia, Bulgaria
2Faculty of Pharmacy, Medical University, Plovdiv, Bulgaria

Introduction. Pharmaceutical care is the responsible provision of drug therapy for the purpose of achieving definite outcomes that improve a patient's quality of life. Pharmaceutical care involves the process through which a pharmacist cooperates with a patient and other professionals in designing, implementing, and monitoring a therapeutic plan that will produce specific therapeutic outcomes for the patient. This in turn involves three major functions:

- identifying potential and actual drug-related problems,
- solving actual drug-related problems, and
- preventing drug-related problems.

The main benefit in pharmaceutical care is a contact based on trust in which the patient grants authority to the provider, and the provider gives competence and commitment to the patient.

Aim. The main aim of this study is to assess what would be the three priorities for Bulgaria in the fields of safety and quality of pharmaceutical care.

Methods. A standard questionnaire was applied to 150 pharmacists.

Results. More than 70% of the pharmacists know the idea, but only 20% a willing to work in accordance to its principles. The main reasons for that are revealed.

Keywords: Bulgaria, pharmaceutical care, pharmacy practice, priority

P67 The application of new kinetic-spectrophotometric method for determination of metronidazole in pharmaceutical formulation

Mijkovic V1, Bojanic V2, Bojanic Z2, Sokolovic D2, Kostic D3, Rakic V4
1Pharmacy of Prokuplje, Ratka Pavlovica 1, Prokuplje, Serbia
2Faculty of Medicine, University of Nis, Serbia
3Faculty of Sciences and Mathematics, The University of Nis, Nis, Serbia
4College of Agriculture and Food Technology, Prokuplje, Serbia

Introduction. Metronidazole [2-(2-methyl-5-nitro-[1H-imidazol-1-yl]) ethanol] is an amebicide, antiprotozoal and antibiotic effective against anaerobic bacteria and certain parasites. Review of literature for MND analysis revealed that several existing methods including different technique such