1st EuCheMS Congress on Green and Sustainable Chemistry

October 13-15, 2013
Budapest, Hungary

Programme & Book of Abstracts
1st EuCheMS Congress on Green and Sustainable Chemistry
October 13–15, 2013 - Budapest, Hungary
Programme & Book of Abstracts

Published by:
HUNGARIAN CHEMICAL SOCIETY, 2013

Cover page:
Work of Art by András Koncz
Heroes' Square
Graphics 70 x 50 cm

ISBN 978-963-9970-41-0
GREEN CHEMISTRY AND BIOREMEDIATION: INVESTIGATION OF METAL INFLUENCE FROM CATALYSTS ON MICROORGANISM CONSORTIA WHICH IS USED IN BIOREMEDIATION

T. Jednak¹, J. Avdalović², S. Miletic³, V. Beškoski¹, M. Ilić³, G. Gojgić-Cvijović³, M. M. Vrvić¹²

¹Faculty of Chemistry, University of Belgrade, Studentski trg 12, 11158 Belgrade, POB 51, Serbia
²Institute for Technology of Nuclear and Other Mineral Raw Materials, Franse d’Epere 86, 11000 Belgrade, Serbia
³Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11001 Belgrade, POB 473, Serbia
srdjan@chem.bg.ac.rs

The object of our study was to investigate whether there is an influence of metal catalysts (waste material obtained by desulfurization of oil) in various consortia of microorganisms isolated from a variety of waste materials, which can be used in the process of bioremediation.

Expected results should expand knowledge in the field of microbial ecology, such as the structure of microbial communities studied, the interconnection of abiotic and biotic factors, and at the same time to answer the questions, whether isolated consortia can be used in bioremediation processes of oil contaminated soil where there is a higher concentration of metals as well as for bioremediation of legacy waste in oil, that is a mixture of a catalyst and hydrocarbon waste, as such a threat to the environment.

Rapid industrialization generates different industrial waste, which has toxic elements such as heavy metals. Elevated concentrations of heavy metals can affect almost every index of microbial metabolic activities.

For bioremediation of heavy metals on an industrial scale we used waste oil from Belgrade heating power plant and waste motor oil as materials from which they were isolated microbial consortia, which will be used in the process of bioremediation of soil contaminated with hydrocarbon contaminants.

Catalysts used in the experimental work were by-products of oil desulfurizer and treated as waste material. Metals to which we were directed attention in this study was molybdenum and cobalt.

Acknowledgement: This research is a part of project III 43004 funded by the Ministry of Education, Science and Technological Development of Republic of Serbia.

References:

GREEN CHEMISTRY AND BIOREMEDIATION: INVESTIGATION OF METAL INFLUENCE FROM CATALYSTS ON MICROORGANISM CONSORTIA WHICH IS USED IN BIOREMEDIATION

T. Jednak1, J. Avdalogić2, S. Miletić2*, V. Beškoski3, M. Ilić2, G. Gojgić-Cvijović2, M. M. Vrvić2,3

1BREM Group, Ulica oslobodjenja 39b, Belgrade-Knezevac, Serbia
2Institute for Chemistry, Technology and Metallurgy, Njegoseva 12, POB 473, Beograd, Serbia
3Faculty of Chemistry, Studentski trg 12-16, POB 51, University of Belgrade, Belgrade, Serbia

*srđjan@chem.bg.ac.rs

Introduction. Bioremediation can be defined as any process that uses microorganisms or their enzymes to return the disturbed environment to its original condition. It has the potential of complete degradation or transformation of hazardous organic pollutants into harmless products. The use of microorganisms in bioremediation is not limited to detoxification of organic compounds. Some microorganisms can reduce the cations of heavy metals into less toxic and harder soluble forms [1].

Materials and Methods. For the preparation of microbial consortium the following materials were used: waste motor oil and soil contaminated with waste fuel oil originated from Belgrade Power Plant.

For toxicity testing 5 different waste catalysts from the process of hydodesulfurization were used.

Investigation of chemical composition of catalysts included: determination of moisture, pH, ash, n-hexane extractable substances (HES) [4], total petroleum hydrocarbons (TPH) [5], carbonates, CO₂, elemental analysis, determination of total heavy metals (As, Fe, Co, Mo).

The inhibitory effect of tested catalysts on growth of microbial consortium in nutrient medium was studied using catalyst aqueous extract in concentration range of 250-6000 ppm for molybdenum, and 64-1540 ppm for cobalt.

Identification of microorganisms were performed by API tests.

Results. The data from chemical analysis of investigated catalysts are shown in table 1.

Table 1. The basic chemical characteristics of studied catalysts

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Catalyst 1</th>
<th>Catalyst 2</th>
<th>Catalyst 3</th>
<th>Catalyst 4</th>
<th>Catalyst 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>4.0</td>
<td>4.5</td>
<td>9.8</td>
<td>28</td>
<td>12.5</td>
</tr>
<tr>
<td>pH</td>
<td>3.7</td>
<td>3.8</td>
<td>3.54</td>
<td>9.95</td>
<td>2.8</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>91.20</td>
<td>92.71</td>
<td>84.59</td>
<td>7.69</td>
<td>94.00</td>
</tr>
<tr>
<td>HES (g/kg)</td>
<td>5.29</td>
<td>1.39</td>
<td>1.20</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>TPH (g/kg)</td>
<td>2.26</td>
<td>0.57</td>
<td>0.43</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Carbonates (%)</td>
<td>/</td>
<td>/</td>
<td>1.16</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td>/</td>
<td>/</td>
<td>0.51</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>< 0.1</td>
<td>/</td>
<td>/</td>
<td>0.35</td>
<td>/</td>
</tr>
<tr>
<td>Total carbon</td>
<td>2.27</td>
<td>0.32</td>
<td>0.64</td>
<td>83.38</td>
<td>< 0.12</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.51</td>
<td>0.65</td>
<td>0.90</td>
<td>2.16</td>
<td>0.54</td>
</tr>
<tr>
<td>Sulfur</td>
<td>2.21</td>
<td>1.81</td>
<td>3.19</td>
<td>/</td>
<td>0.87</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.05</td>
<td>0.007</td>
<td>0.31</td>
<td>0.001</td>
<td>2.77</td>
</tr>
<tr>
<td>Iron</td>
<td>4.58</td>
<td>0.932</td>
<td>9.12</td>
<td>2.26</td>
<td>2.56</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7.75</td>
<td>0.002</td>
<td>17.12</td>
<td>0.033</td>
<td>18.65</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>21.46</td>
<td>0.007</td>
<td>52.15</td>
<td>0.055</td>
<td>56.68</td>
</tr>
</tbody>
</table>

All catalysts (except number 4) has the similar basic chemical characteristics. In catalyst number 4 is evidently larger amount of organic substance. For the further investigation of heavy metals role in the process of bioremediation the catalyst number 3 was chosen due to its higher content of molybdenum, cobalt and iron.

It was determined that toxicity of molybdenum is higher than 6000 ppm and cobalt more than 1540 ppm.

The genera of microorganisms present in consortium are Pseudomonas, Rhodococcus, Sphingomonas, Achromobacter, Stenotrophomonas and Aeromonas.

Conclusion. Aqueous extract of the catalyst number 3 doesn’t have inhibitory effect on consortium at investigated concentration of metals and could be safely used in the bioremediation process.

The results of present study provide evidence that microbial consortium isolated from oil contaminated soil could also be used in the bioremediation process with the presence of wasted catalysts.

Acknowledgement: This research is a part of project III 43004 funded by the Ministry of Education, Science and Technological Development of Republic of Serbia.

References.