Outcome of ICAEC 2014

The expected outcomes are as follows:
- To declare importance to prevent pollution by micro-pollutants (declare a statement)
- To make clear environmental pollution by micro-pollutants in South East Asia, East Asia and South Pacific region
- To strengthen relationship of researchers, particularly young researchers between Thailand and Japan

Executive Chair

Takeshi Nakano Osaka University

Advisory Board Members

Kiwao Kadokami The University of Kitakyushu
Masatoshi Morita Ehime University
Noriyuki Suzuki National Institute For Environmental Studies
Susumu Kawahara Japan Society For Environmental Chemistry
Takumi Takasuga Shimadzu Techno-Research Inc.
Yoshinori Fujimine Otsuka Pharmaceutical Co., Ltd

Scientific Committee

Chisato Matsumura Hyogo Pref. Institute of Environmental Sciences
Daisuke Nakajima National Institute for Environmental Studies
Daisuke Ueno Saga University
Haruhiko Nakata Kumamoto University
Hideshige Takada Tokyo University of Agriculture And Technology
Hiroshi Yamamoto The University of Tokushima
Izumi Watanabe Tokyo University of Agriculture And Technology
Kazuhiko Akutsu Osaka Pref.Institute of Public Health
Koji Arizono Prefectural University of Kumamoto
Norihisa Tatarazako National Institute for Environmental Studies
Seiji Watanabe National Research And Training Institute, Japan
Shin Takahashi Ehime University
Shoji Nakayama National Institute for Environmental Studies
Takanori Sakiyama Osaka city Institute of Environmental Sciences
Takashi Amagai University of Shizuoka
Tatsuya Kunisue Ehime University
Tomohiko Itobe National Institute for Environmental Studies
Yasuuki Shibata National Institute for Environmental Studies
Yoshiharu Shirane SOWA Consultants Inc.
Yuichi Horii Center for Environmental Science in Saitama
Amornrat Lertworasirikul Kasetsart University
Aphichart Rodchanarowan Kasetsart University
Apirat Laobuthee Kasetsart University
Chart Chiemchaisri Kasetsart University
Cheema Soralump Kasetsart University
Daam Settachan Chulabhorn Research Institute
Gautier Landvot Kasetsart University
Jutamaad Satayavivad Chulabhorn Research Institute
Panida Navasumrit Chulabhorn Research Institute
pongsak noophan Kasetsart University
Sanya Sirivithayapakorn Kasetsart University
Wilai Chiemchaisri Kasetsart University

Japan Committee
Akira Toriba Kanazawa University
Hatsue Braatz SheGoTec Japan, Inc.
Hideo Yamazaki Kinki University
Hiroshi Hoshino Center for Environmental Science in Saitama
Jun Sekizawa Communication Center for Food and Health Sciences, Japan
Jun Yoshinaga The University of Tokyo
Kanji Iwamoto Nihon BUCHI K.K.
Katsuhiko Nakagawa Shimadzu Corporation
Kei Nomiyama Ehime University
Kensaku Kakimoto Osaka Prefectural Institute of Public Health
Kyoichi Komori Japan Analytical Instruments Manufacturers' Association
Mari Asami National Institute of Public Health
Masayuki Kunugi Kanazawa University
Muneko Nishijo Kanazawa Medical University
Shinsuke Tanabe Ehime University
Shunji Hashimoto National Institute for Environmental Studies
Takeshi Enomoto JEOL. Ltd.
Takuya Shiozaki Japan Environmental Sanitation Center
Teruhiko Kido Kanazawa University
Toru Matsumura UAE-IDEA Advance Analytical Company Limited
Yasuhiro Hirai Kyoto University
Yoko Fujikawa Kyoto University
Yoshitoku Yoshida Nagoya University
Youko Takagi Kyoto Electronics Manufacturing Co., Ltd.
Yuji Kunimi Nagao Clinic

Thai committee
Ministry of Natural Resources and Environmental
Department of Environmental Quality Promotion
Environmental Research and Training Center
Chulabhorn Research Institute
Pollution Control Department
Department of Science Service
Department of Agriculture
Department of Industrial Works
Department of Medical Sciences
Chemical Society of Thailand
Polymer Society of Thailand
Kasetsart University
Center of Excellence on Hazardous Substance Management
| C 1-1-1 | 45 | Separation of PCB Isomers #52 and #69 in Kanechlor and Fish Oil Samples Using GC/MS/ECD | Hiroshi TAKAKUWA, Sadao NAKAMURA, Reiko MATSUMOTO, Masahide KAWANO, Ichiro TAKEUCHI
1Agilent Technologies, Japan; 2Faculty of Agriculture, Ehime Univ., Japan |
| C 1-1-2 | 38 | Selective and Comprehensive Analysis of Organohalogen Compounds by GCxGC-HRTOFMS and MS/MS | Shunji HASHIMOTO, Yasuyuki ZUSHI, Yoshikatsu TAKAZAWA, Akihiro FUSHIHI, Kiyoshi TANABE, Yasuyuki SHIBATA
1National Institute for Environmental Studies, Japan |
| C 1-1-3 | 98 | Comprehensive GC × GC - MS Analysis of Waste motor Oil from Malaysia reveals in-situ Production of PAHs: A new Pollution Source | Narayanan KANNAN, Haruhiko MIYAGAWA, Riki KITANO, Katsuhiko NAKAGAWA, Megumi HIROOKA, Shunji HASHIMOTO, Vladimir P. BEŠKOSKI, Fatemeh A JAHRMO, Takeshi NAKANO
1Faculty of Environmental Studies, Universiti Putra Malaysia, Malaysia; 2Shimadzu corporation, Japan; 3National Institute for Environmental Studies, Japan; 4Faculty of Chemistry, Univ. of Belgrade, Serbia; 5Osaka Univ., Japan |
| C 1-1-4 | 87 | Advantages of GC/MS/MS Analysis for PCBs, PBDEs and PAHs | Katsuhiko NAKAGAWA, Kouki TANAKA, Riki KITANO, Masato TAKAKURA, Yuki SAKAMOTO, Tomoaki KONDO, Haruhiko MIYAGAWA
1Shimadzu Corporation, Japan |
| C 1-1-5 | 55 | Screening Analysis of 1200 Micro-Pollutants in Environmental Waters in Vietnam | Kiwao KADOKAMI, Hanh Thi DUONG, Hong Thi Cam CHAU, Thao Thanh NGUYEN, Trung Quang NGUYEN
1The Univ. of Kitakyushu, JAPAN; 2Institute of Environmental Technology, Vietnam Academy of Science, Vietnam |
| C 1-2-1 | 58 | Are PPCPs Really Threats to Ecological Risk? | Hiroshi YAMAMOTO, Norihisa TATARAZAKO
1The Univ. of Tokushima, Japan; 2National Institute for Environmental Studies, Japan |
| C 1-2-2 | 5 | Nitro-PAH Product Formation from Heterogeneous Reactions of PAHs with NO₂, NO₃/N₂O₅, and OH Radicals: Prediction, Laboratory Studies and Mutagenicity | Narumol JARIYASOPIT, Melissa MC INTOSH, Kathryn ZIMMERMANN, Janet AREY, Roger ATKINSON, Paul Ha-Yeon CHEONG, Rich G. CARTER, Tian-Wei Yu, Roderick H. DASHWOOD, Staci L.M. SIMONICH, 1Dept. of Chemistry, Oregon State Univ., USA; 2Air Pollution Research Center, Univ. of California, USA; 3Institute of Biosciences & Technology, Texas A&M Health Science Center, USA; 4Environmental and Molecular Toxicology, Oregon State Univ., Corvallis, USA. |
| C 1-2-3 | 60 | Assessment of Phthalate Esters in Aquatic Environment of Pradoo Bay, Rayong Industrial Area, Eastern Thailand | Fairda MALEM, Peerapong SONGTHONDECHA, Patchara KHAWMODJOD, Orapin CHIENTHAVORN
1Environmental Research and Training Center, Thailand; 2Faculty of Science, Kasetsart Univ., Thailand |
| C 1-3-1 | 130 | Development of the TWO-Vector, Green Fluorescence Protein-Based Bioreporter for BTEX Detection | Naruemon CHUMJA, Suwat SOONGLERDSONGPHA, Komkrit SUTTIPONPAMIT, Chatree TANKUNAKORN, Alisa S. VANGNAI
1International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn Univ., Thailand; 2Center of Excellence on Hazardous Substance Management, Chulalongkorn Univ., Thailand; 3Environmental Research and Management Department, PTT Research and Technology Institute, Thailand; 4Faculty of Science, Chulalongkorn Univ., Thailand |
COMPREHENSIVE GC × GC - MS ANALYSIS OF WASTE MOTOR OIL FROM MALAYSIA REVEALS IN-SITU PRODUCTION OF PAHs: A NEW POLLUTION SOURCE

Narayanan KANNAN1, Haruhiko MIYAGAWA2, Riki KITANO2, Katsuhiko NAKAGAWA2, Megumi HIROOKA2, Shunji HASHIMOTO2, Vladimir P. BEŠKOSKI4, Fatemeh A JAHROMI1, Takeshi NAKANO5

1Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia; 2Shimadzu corporation, 1, Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto, Japan; 3National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan; 4Faculty of Chemistry, University of Belgrade, Studentski trg 1, 11000 Belgrade, Serbia; 5Osaka University, 2-4 Yamadaoka, Suita, Osaka, Japan

Key word : PCBs, new source, crankcase waste oil, GC×GC MS, finger printing, environmental forensic

Introduction
Spillage and illegal dumping of waste crankcase oil or leakage of the same from vehicles onto road surfaces with the subsequent washout by street runoff seem to be a continuous source of environmental pollution in an era of vehicular transport. To understand and examine this particular source, a detailed study on the chemical composition of the waste oil is needed. GC-MS is an effective technique in the separation of compounds, as gas chromatography offers good separation and mass spectrometry offers compound specific identification; hence, it is widely used in environmental forensic studies1. However, crankcase oil is laden with hydrocarbons such as \(n \)-alkanes; \(iso \)-alkanes; steranes; terpanes; polynuclear aromatic hydrocarbons (PAHs); aromatic steranes; and specific polycyclic compounds2. In this kind of a situation selective detection of target compounds from overlapping co-contaminants is a challenging task. Multidimensional chromatographic techniques have been applied in the determination of polychlorinated biphenyls in complex environmental matrices3-4. Incorporating this principle in the comprehensive two dimensional GC × GC technique along with mass spectrometry has added ultra-high separation capability to environmental forensic studies5-6. This technology comes handy when separation of target substances from complicated matrices becomes problematic using ordinary GC-MS. We have applied GC × GC - MS technique in the analysis of some waste oil samples from Malaysia and the data were compared with that of GC-MS. Waste motor oil could be an important source of PAHs pollution in Malaysia as vehicular transport is heavy and environmental regulations do not restrict the release of motor oil to the environment strictly. Tropical climate with frequent storms enhance the release of contaminated motor oil to the environment. Application of GC × GC - MS technique has identified and confirmed the in-situ production of PAHs through pyrolytic processes in motor engine.

Materials and methods
Waste motor oil (crankcase oil) was sampled at 11 automobile repair shops in the district of Selangor, Malaysia. These were uncharacterized, uncategorized oil samples (MY-1,2,3,4,5,6,9,10,11,12,13) as oil was pooled over a period of time in drums (storage tanks). On the other hand, two crankcase oil samples were collected directly from cars that came for repair (MY-7 & 8). One Castrol unused oil (MY-14) and one Yamaha unused oil (MY-15) were sampled (control) as well. The oil samples were dissolved in isooctane and analyzed directly in GC-MS and GC × GC - MS.

\[GC \times GC - MS \text{ was performed on a gas chromatograph - quadrupole mass spectrometer GCMS-QP2010 Ultra (Shimadzu, Kyoto, Japan) and GC \times GC modulator (Zoex Corp.). A DB®-1 (J&W Corp., methyl polysiloxane, 15 m \times 0.25 mm I.D., 1.0 \mu m \text{ film thickness}) and a Rtx®-WAX (Resteck Corp., 2.5 m x 0.1 mm I.D., df=0.1 \mu m) columns were connected through the GC \times GC modulator as the first and second capillary columns, respectively. Results were processed using a special multipurpose GC \times GC analysis software package. It is capable of directly reading GC \times GC data obtained with GCMSsolution, converting it to a 2-dimensional image, and then analyzing it.} \]

Results and discussion
The hydrocarbon families in motor lubricating oils are best studied using gas chromatography-mass spectrometry in full scan mode. Various homologous series of hydrocarbons were characterized at known fragment ions. They are: \(n \)-alkanes; \(iso \)-alkanes; steranes; terpanes; polynuclear aromatic hydrocarbons (PAHs); aromatic steranes; and specific polycyclic compounds. Used waste lubricating and unused motor lubricating oils
are highly depleted in the paraffinic hydrocarbons (n-alkane and iso-alkanes)\(^2\). In spite of that a lot of peaks were detected in a conventional GC-MS analysis which were overlapping in the total ion chromatogram.

![Figure 1. a) 2D Chromatogram of MY-04 used oil b) Thermal modulation of MY-04 used oil](image)

On the other hand with GC × GC - MS system incorporating high-polarity second column, it was possible to separate the paraffin from aromatic series, there by obtaining a blob distribution pattern reflecting the compound’s structure. Polyaromatic hydrocarbons (PAHs), such as fluoranthene and pyrene, could be separated from oil matrix and their identification was easily performed using mass spectral similarity search (Fig. 1).

Used oil can be differentiated from unused lubricating oil, because it often has low molecular range hydrocarbons which are absent in the unused oil\(^2\). The area ratios of phenanthrene to anthracene and the area ratios of fluoranthene to pyrene were useful in evaluating and classifying oil samples. However, while using regular GC-MS technique, anthracene was not detected and the area ratio of fluoranthene/pyrene was lower than that of the used oils (Fig. 2). The area ratios for thirteen used oil samples obtained from conventional GC-MS analysis did not clarify the differences among the samples. On the other hand, when the same samples were analysed using GC×GC-MS an ultra high resolution separation was obtained and the area ratios calculated based on this analysis differentiated distinctly the used oils, unused oils and oils obtained directly from a car (vs pooled samples of various auromobiles over a period of time).
Figure 3. Upper: Phenanthrene identification was marred by alkyl PAHs in a conventional GC-MS system: Lower: GC×GC-MS analysis offered a clear solution to co-elution problems.

Figure 4. Fluoranthene/Pyrene:Phenanthrene/Anthracene ratios of used and unused crankcase oils revealing *in-situ* synthesis of PAHs during combustion. MY-14 is unused oil sample and the rest are used oil samples.

It has been noticed earlier that used crankcase oil carried pyrogenic and petrogenic signatures of PAHs. Incorporation of unburned fuel (gasoline or diesel) in the car lead to petrogenic signatures while PAHs generated in the combustion chamber in the engine brought pyrogenic signatures to the crankcase oil. The PAHs profile for “fresh” crankcase oil displayed severe depletion of heavy molecular weight PAHs. Hence the ratio of heavy to light (H/L) molecular weight PAHs had been used to identify pyrogenicity. In the same way, fluoranthene and...
pyrene were often associated during natural matrices analyses and were considered as typical pyrogenic products derived from high-temperature condensation of lower molecular weight aromatic compounds. In fact, phenanthrene and anthracene are two structural isomers. Because of their different physico-chemical properties, they could behave differently in the environment and could lead to different values for their Phe/An ratio that would give useful information on the PAH origin. Phenanthrene is more thermodynamically stable than anthracene, so, Phe/An ratio is observed to be very high in PAH petrogenic pollution, but lower in pyrolytic contamination cases. Similarly, fluoranthene versus pyrene ratios are used to derive the same conclusion. The current research revealed that conventional GC-MS technique might not reveal the concentrations accurately and hence blur the source identification, whereas, GC×GC-MS analysis will result in unambiguous, accurate and sensitive determination of target compounds even in a complex mixture/matrix. Hence GC×GC-MS technique has identified in-situ production of PAHs in automobile combustion processes, thereby, revealing a new source of PAHs pollution to the environment.

Conclusion
In comparison to conventional GC-MS analysis GC×GC-MS analysis revealed higher separation power and accurate determination of target compounds in complex matrix, without any conventional cleanup steps. Thus a complex matrix such as waste motor oil (crankcase oil) when injected directly in GC×GC-MS system was separated into several groups of compounds and allowed accurate determination of target compounds. Such an application in the present study revealed in-situ production of PAHs during automobile engine combustion process, thereby revealing a new pollution source of PAHs to the environment. Thus GC×GC-MS could be effectively used in finger printing and source identification in environmental forensic studies.

References:
2. Kaplan IR, Lu ST, Alimi HM, MacMurphy J. (2001); Environ. Forensics 2, 231-248