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The expected outcomes are as follows; 

  To declare importance to prevent pollution by micro-pollutants (declare a statement) 

  To make clear environmental pollution by micro-pollutants in South East Asia, East Asia and South 

Pacific region 

  To strengthen relationship of researchers, particularly young researchers between Thailand and Japan  
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Keywords    PFOS, PFOA, 8:2 FTOH, mammalian and microbial cytochrome P450

Abstract    Chemicals known as perfluoroalkyl and polyfluoroalkyl substances (PFASs) do not occur naturally, 
but because of wide use in chemical production since the 1950s, they can be found in the environment. Currently, 
the two most persistent and toxic PFASs are perfluorooctanoic acid (PFOA, C7F15COOH) and perfluorooctane 
sulfonic acid (PFOS, C8F17SO3H). PFOS including the form of salts and its precursor, perfluorooctane sulfonyl 
fluoride, are classified as persistent organic pollutant (POPs) according to Stockholm Convention on POPs. A 
number of studies have reported the ubiquitous distribution of PFASs in wildlife and humans [1-3] and thus it is 
important to determine mammalian and microbial metabolisms of PFOS and PFOA with cytochrome P450 
(CYP) monooxygenases to understand distribution and impact of PFASs on human and wildlife. In the 
detoxification of xenobiotics, P450 enzymes play important physiological roles. For example, CYP1A1 proteins 
can metabolize some dioxins and PCBs by hydroxylation, but the activities of human and rat CYP1A1 proteins 
are very different. Recently it has been demonstrated [4] that rat CYP1A1 metabolized 3,3',4,4',5-
pentachlorobiphenyl (PCB126) into 4-OH-3,3',4',5-tetrachlorobiphenyl and 4-OH-3,3',4',5,5'-
pentachlorobiphenyl, but human CYP1A1 did not metabolize. Furthermore, indigenous microorganisms are a 
key for biotransformation and biodegradation of organic molecules such as xenobiotics, PCBs and pesticides as 
well as oil hydrocarbons [5-7]. Possible mechanisms of aerobic microbial biotransformation/biodegradation of 
fluorinated organic compounds in the polluted environment may include catalysis by fungal or bacterial CYP 
monooxygenases. 
In order to determine behavior and metabolism of PFOS, PFOA and 8:2 FTOH, in vitro oxidation experiments of 
PFASs with rat and human CYP monooxygenases were conducted. Herbicide chlortoluron was used as positive 
control for CYP binding. Furthermore, indigenous microbial consortium was enriched and isolated from the 
environment polluted by PFASs. In vitro interaction of PFASs and total microbial CYP were also analyzed. 
These results give an insight in similarities and differences between mammalian and microbial metabolisms of 
PFOS, PFOA and 8:2 FTOH with CYP monooxygenases, and how ubiquitous presence of PFASs in the 
environment and biota affects on the metabolism. 
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7. Dionisi, D., ChemBioEng Rev 1, (2014) 67–82;
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Introduction

Chemicals known as perfluoroalkyl and polyfluoroalkyl substances (PFASs) do not occur
naturally, but because of wide use in chemical production since the 1950s, they can be
found in the environment. Currently, the two most persistent and toxic PFASs are
perfluorooctanoic acid (PFOA, C7F15COOH) and perfluorooctane sulfonic acid
(PFOS, C8F17SO3H). PFOS including the form of salts and its precursor, perfluorooctane
sulfonyl fluoride, are classified as persistent organic pollutant (POPs) according to
Stockholm Convention on POPs. A ubiquitous distribution of PFASs in wildlife and
humans is confirmed [1-3] and thus it is important to determine mammalian and
microbial metabolisms of PFOS and PFOA with cytochrome P450 (CYP)
monooxygenases to understand distribution and impact of PFASs on human and
wildlife.

However, recovery rate is suggesting that PFOS and PFOA interact differently with

rat CYP1A1 binding place. Recovery rate of PFOS from solutions 3 and 5 indicate
reduction because of abiotic factors.
High recovery rate in 4 and 6 of PFOA indicate that decrease in solution 2 is possible
consequences of interaction of PFOA with MF and NADPH.
Oxidation of PFOA could lead to change of polarity and reduction of recovery rate.
However, new peaks, hydroxylation products were not detected using LC/MS/MS.

2. Binding interaction of CT, PFOS, PFOA and 8:2 FTOH with rat CYP1A1 and microbial 
CYP102A1

Vladimir BEŠKOSKI1,2,3, Takeshi NAKANO4, Chisato MATSUMURA5, Katsuya YAMAMOTO5, Atsushi 
YAMAMOTO6, Mamoru MOTEGI7, Hideo OKAMURA8, Hideyuki INUI2

INTERACTION OF PFOS, PFOA AND 8:2 FTOH WITH HUMAN, RAT, AND 

MICROBIAL CYTOCHROME P450s: SIMILARITIES AND DIFFERENCES

1Faculty of Chemistry, University of Belgrade, Belgrade, Serbia; 2JSPS Invitation Fellowship Program for Research in Japan; 3Research Center for 
Environmental Genomics, Kobe University, Kobe, Japan; 4Research Center for Environmental Preservation, Osaka University, Osaka, Japan; 5Hyogo 

Prefectural Institute of Environmental Sciences, Kobe, Japan; 6Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan; 7Center for 
Environmental Science in Saitama, Saitama, Japan; 8Graduate School of Maritime Sciences, Kobe University, Kobe, Japan

wildlife.
P450 enzymes play important physiological roles in the detoxification of xenobiotics.
For example, CYP1A1 proteins can metabolize some dioxins and PCBs by
hydroxylation, but the activities of human and rat CYP1A1 proteins are very different.
Recently it has been demonstrated [4] that rat CYP1A1 metabolized 3,3',4,4',5-
pentachlorobiphenyl (PCB126) into 4-OH-3,3',4',5-tetrachlorobiphenyl and 4-OH-
3,3',4',5,5'-pentachlorobiphenyl, but human CYP1A1 did not metabolize.
Furthermore, indigenous microorganisms are a key for biotransformation and
biodegradation of organic molecules such as xenobiotics, PCBs and pesticides as well
as oil hydrocarbons [5-7]. Possible mechanisms of aerobic microbial
biotransformation/biodegradation of fluorinated organic compounds in the polluted
environment may include catalysis by fungal or bacterial CYP monooxygenases.
Material and methods

In order to determine behavior and metabolism of PFOS, PFOA and 8:2 FTOH, in vitro

oxidation experiments of PFASs with rat CYP monooxygenases were conducted. Yeast
with transformed rat CYP1A1 gene and human CYP1A1 gene were grown in SD media
(N-base 6.7 g/L; Glucose 80 g/L and Histidine 160 mg/L) and YPAD media (yeast
extract 10 g/L; BactoPeptone 20 g/L; Adenin sulphate 40 mg/L and Glucose 80 g/L).
Cytochrome from Bacillus megaterium CYP102A1 (also referred to as P450 BM-
3), were used for studying interaction of PFASs with microbial cytochromes.
Hydroxylation of PFOS and PFOA with rat CYP1A1 microsomal fraction was studied:
Microsomal fraction (protein concentration 40pmol), PFOS and PFOA (100 ppb) and
NADPH were used. Concentration of human CYP1A1 was to low to analyze
interactions.
The extracts were loaded to Solid Phase Extraction cartridge (Presep PFC-II, Wako Pure
Chemical Industries) and MeOH eluates were analyzed using LC/MS/MS.
Competition for CYP binding between chlorotoluron (CT) and PFAS were studied.
Herbicide chlortoluron was used as positive control for CYP binding.
Results and discussion

The concentration of microsomal fraction based on CO difference spectroscopy of rat

Kd - rat CYP 1A1 [µM]

CT PFOS PFOA 8:2 FTOH CT & PFOS
CT & 
PFOA

CT & 
8:2FTOH

10.2 44.2 3.94 -42.6 -1.47 0.164 -4.76

Kd - microbial CYP102A1 [µM]

Table 2. Kd values of CT, PFOS, PFOA and 8:2 FTOH binding to rat CYP1A1 and microbial CYP102A1   
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Fig 4a-b. Rat CYP1A1 spectrum of CT binding

Fig 2. CO difference spectrum of rat CYP1A1 
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Fig 3. CO difference spectrum of microbial CYP102A1
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Fig 5a-b. Microbial CYP102A1 spectrum of PFOA binding
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The concentration of microsomal fraction based on CO difference spectroscopy of rat
CYP1A1 was 0.3pmol/µL (Fig 1).

MF NADPH PFOS PFOA ppb %
1. + + + - 80.1 80
2. + + - + 81.8 82
3. + - + - 80.6 81
4. + - - + 96.2 96
5. - + + - 82.3 82
6. - + - + 99.5 99

1. Products of possible hydroxylation of PFAS after incubation with CYP1A1 were 
studied using 6 model systems (Table 1). 

PFOS

PFOA 8:2 FTOH

CT

6.

5.

4.

3.

2.

1.

PFOA

PFOS

Table 1. Model systems and recovery rates Rat CYP1A1 Kd for CT is 10.2 µM, for PFOS is 44.2 µM and for PFOA is 3.94 µM.
Microbial CYP102A1 Kd for CT is 8.62 µM, for PFOS is 37.9 µM and for PFOA is 1.61
µM. These results suggest that these three substrates are capable to enter
binding pocket of P450 and to interact with this enzyme although CT is structurally
not similar to PFOS and PFOA. Furthermore, Kd values suggest that binding affinity

increase in the following order: PFOS<CT<PFOA both in mammalian and

microbial cytochroms tested.

During incubation with 8:2 FTOH binding in the binding pocket was not
determined in Rat CYP1A1 nor microbial CYP102A1. However, during incubation of
Rat CYP1A1 and Microbial CYP102A1 cytochromes with CT & 8:2 FTOH it was
observed that binding of CT was inhibited. In model systems with CT + PFOS and
CT + PFOA it was observed that kinetics of the reaction did not followed the
hyperbolic relationship between the rate of reaction and the concentration of
substrate. This data suggest that there is a competition between CT and PFOS as

well as CT and PFOA for the binding pocket of P450.

Kd - microbial CYP102A1 [µM]

CT PFOS PFOA 8:2 FTOH CT & PFOS
CT & 
PFOA

CT & 
8:2FTOH

8.62 37.9 1.61 -0.00986 10.3 7.50 -2.32
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Fig 1. LC/MS chromatograms of 6 model systems extracts
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