

Programs and Abstracts

Venue : Convention Center, Chulabhorn Research Institute Bangkok, Thailand

D a t e : November 24th - 26th, 2014

Japan Society for Environmental Chemistry

Outcome of ICAEC 2014

The expected outcomes are as follows;

- To declare importance to prevent pollution by micro-pollutants (declare a statement)
- To make clear environmental pollution by micro-pollutants in South East Asia, East Asia and South Pacific region
- To strengthen relationship of researchers, particularly young researchers between Thailand and Japan

Executive Chair

Takeshi Nakano

Osaka University

Advisory Board Members

Kiwao Kadokami	The University of Kitakyushu
Masatoshi Morita	Ehime University
Noriyuki Suzuki	National Institute For Environmental Studies
Susumu Kawahara	Japan Society For Environmental Chemistry
Takumi Takasuga	Shimadzu Techno-Research Inc.
Yoshinori Fujimine	Otsuka Pharmaceutical Co., Ltd

Scientific Committee

Chisato Matsumura	Hyogo Pref. Institute of Environmental Sciences
Daisuke Nakajima	National Institute for Environmental Studies
Daisuke Ueno	Saga University
Haruhiko Nakata	Kumamoto University
Hideshige Takada	Tokyo University of Agriculture And Technology
Hiroshi Yamamoto	The University of Tokushima
Izumi Watanabe	Tokyo University of Agriculture And Technology
Kazuhiko Akutsu	Osaka Pref.Institute of Public Health
Koji Arizono	Prefectural University of Kumamoto
Norihisa Tatarazako	National Institute for Environmental Studies
Seiji Watanabe	National Research And Training Institute, Japan
Shin Takahashi	Ehime University
Shoji Nakayama	National Institute for Environmental Studies
Takanori Sakiyama	Osaka city Institute of Environmental Sciences
Takashi Amagai	University of Shizuoka
Tatsuya Kunisue	Ehime University
Tomohiko Isobe	National Institute for Environmental Studies
Yasuyuki Shibata	National Institute for Environmental Studies
Yoshiharu Shirane	SOWA Consultants Inc.
Yuichi Horii	Center for Environmental Science in Saitama
Amornrat Lertworasirikul	Kasetsart University
Aphichart Rodchanarowan	Kasetsart University
Apirat Laobuthee	Kasetsart University
Chart Chiemchaisri	Kasetsart University
Cheema Soralump	Kasetsart University
Daam Settachan	Chulabhorn Research Institute
Gautier Landvot	Kasetsart University

Jutamaad Satayavivad	Chulabhorn Research Institute
Panida Navasumrit	Chulabhorn Research Institute
pongsak noophan	Kasetsart University
Sanya Sirivithayapakorn	Kasetsart University
Wilai Chiemchaisri	Kasetsart University

Japan Committee

Akira Toriba	Kanazawa University
Hatsue Braatz	SheGoTec Japan, Inc.
Hideo Yamazaki	Kinki University
Hiroshi Hoshino	Center for Environmental Science in Saitama
Jun Sekizawa	Communication Center for Food and Health Sciences, Japan
Jun Yoshinaga	The University of Tokyo
Kanji Iwamoto	Nihon BUCHI K.K.
Katsuhiro Nakagawa	Shimadzu Corporation
Kei Nomiyama	Ehime University
Kensaku Kakimoto	Osaka Prefectural Institute of Public Health
Kyoichi Komori	Japan Analytical Instruments Manufacturers' Association
Mari Asami	National Institute of Public Health
Masayuki Kunugi	Kanazawa University
Muneko Nishijo	Kanazawa Medical University
Shinsuke Tanabe	Ehime University
Shunji Hashimoto	National Institute for Environmental Studies
Takeshi Enomoto	JEOL. Ltd.
Takuya Shiozaki	Japan Environmental Sanitation Center
Teruhiko Kido	Kanazawa University
Toru Matsumura	UAE-IDEA Advance Analytical Company Limited
Yasuhiro Hirai	Kyoto University
Yoko Fujikawa	Kyoto University
Yoshitoku Yoshida	Nagoya University
Youko Takagi	Kyoto Electronics Manufacturing Co., Ltd.
Yuji Kunimi	Nagao Clinic

Thai committee

Ministry of Natural Resources and Environmental Department of Environmental Quality Promotion Environmental Research and Training Center Chulabhorn Research Institute Pollution Control Department Department of Science Service Department of Agriculture Department of Industrial Works Department of Medical Sciences Chemical Society of Thailand Polymer Society of Thailand Kasetsart University Center of Excellence on Hazardous Substance Management

P-89	M-4	using Delayed Fluorescence in the Green Alga <i>Pseudokirchneriella subcapitata</i> Effect of Excessive Doses of Oxytetracycline on Antioxidative Capacity in Coho Salmon	ARIZONO, Yasuniro ISHIBASHI ¹ Prefectural Univ. of Kumamoto, Japan; ² Hamamatsu photonics K.K., Japan Toshiki NAKANO ¹ *, Satoshi HAYASHI ¹ , Norimi NAGAMINE ¹ , Toshiyasu YAMAGUCHI ¹ , Minoru SATO ¹ ¹ Marine Biochem. Lab., Graduate School of Agriculture
P-88	M-19	Toxicity Evaluation of 4-Nonylphenol Isomers with Ecotoxicological Bioassay	Research Institute, Thailand Ryo OMAGARI ¹ *, Masakazu KATSUMATA ² , Koji ARIZONO ¹ , Yasuhiro ISHIBASHI ¹
		Compounds Emitted from Incense Smoke in Temple Workers	Jeerawan PROMVIJIT ¹ , Suppachai CHOONVISASE ¹ , Samroeng CHANTCHAEMSAI ¹ , Netnapa NAKNGAM ¹ , Mathuros RUCHIRAWAT ¹ ¹ Laboratory of Environmental Toxicology, Chulabhorn
P-87	142	Health Effects of Exposure to Carcinogenic	Thailand; ² Dept. of Environmental Quality Promotion, Ministry of Natural Resources and Environment, ThailandVarabhornPARNLOB ¹ , PanidaNAVASUMRIT ¹ ,
P-86	102	Blood Cholinesterase Activity Levels of Farmers from Mae Taeng District, Chiang Mai Province, Thailand	Surat HONGSIBSONG ¹ *, Tanyaporn KERDNOI ¹ , Niphan SRINUAL ¹ , Vanvimol PATARASIRIWONG ² , Tippawan PRAPAMONTOL ¹ ¹ Research Institute for Health Sciences, Chiang Mai Univ.,
D 97	102	Environment - Road to Successful Bioremediation	Hideyuki INUI ³ ¹ Faculty of Chemistry, Univ. of Belgrade, Serbia; ² JSPS Invitation Fellowship Program for Research in Japan; ³ Research Center for Environmental Genomics, Kobe Univ., Japan; ⁴ Research Center for Environmental Preservation, Osaka Univ., Japan; ⁵ Osaka City Institute of Public Health and Environmental Sciences, Japan; ⁶ Hyogo Prefectural Institute of Environmental Sciences, Japan; ⁷ Center for Environmental Sciences in Saitama, Japan; ⁸ Graduate School of Maritime Sciences, Kobe Univ., Japan
P-85	108	Biotransformation of Perfluorinated Compounds by the Action of Microbial Community Isolated from Polluted	Vladimir P. BEŠKOSKI ^{1,2,3} , Takeshi NAKANO ⁴ , Atsushi YAMAMOTO ⁵ , Chisato MATSUMURA ⁶ , Katsuya YAMAMOTO ⁶ , Mamoru MOTEGI ⁷ , Hideo OKAMURA ⁸ ,
			Univ., Japan; ⁴ Research Center for Environmental Preservation, Osaka Univ., Japan; ⁵ Hyogo Prefectural Institute of Environmental Sciences, Japan; ⁶ Osaka City Institute of Public Health and Environmental Sciences, Japan; ⁷ Center for Environmental Science in Saitama, Japan; ⁸ Graduate School of Maritime Sciences, Kobe Univ., Japan
		with Human, rat and Microbial Cytochrome P450s : Similarities and Differences	MATSUMURA ⁵ , Katsuya YAMAMOTO ⁵ , Atsushi YAMAMOTO ⁶ , Mamoru MOTEGI ⁷ , Hideo OKAMURA ⁸ , Hideyuki INUI ² ¹ Faculty of Chemistry, Univ. of Belgrade, Serbia; ² JSPS Invitation Fellowship Program for Research in Japan; ³ Research Center for Environmental Genomics, Kobe
P-84	107	Nuclear Receptor Activities of Hepatomegaly-Inducing Perfluorooctanoic acid and its Related Compounds	SATA ² , Hiroyuki NAKAJIMA ³ , Chise NOOMOTE ³ , Chieri FUJINO ⁴ , Naoto URAMARU ⁴ , Shigeyuki KITAMURA ⁴ , Kouichi YOSHINARI ^{3,5} ¹ Hokkaido Institute of Public Health, Japan; ² National Institute of Public Health, Japan; ³ Graduate School of Pharmaceutical Sciences, Tohoku Univ., Japan; ⁴ Nihon Pharmaceutical Univ., Japan; ⁵ School of Pharmaceutical Sciences, Univ. of Shizuoka, Japan Vladimir BEŠKOSKI ^{1,2,3} , Takeshi NAKANO ⁴ , Chisato
P-83	24	Comparative Study on Human and Mouse	Hiroyuki KOJIMA ¹ *, Shinji TAKEUCHI ¹ , Fumihiro

BIOTRANSFORMATION OF PERFLUORINATED COMPOUNDS BY THE ACTION OF MICROBIAL COMMUNITY ISOLATED FROM POLLUTED ENVIRONMENT - ROAD TO SUCCESSFUL BIOREMEDIATION

Vladimir P. BEŠKOSKI^{1,2,3}, Takeshi NAKANO⁴, Atsushi YAMAMOTO⁵, Chisato MATSUMURA⁶, Katsuya YAMAMOTO⁶, Mamoru MOTEGI⁷, Hideo OKAMURA⁸, Hideyuki INUI³

¹Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ²JSPS Invitation Fellowship Program for Research in Japan (Long term); ³Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; ⁴Research Center for Environmental Preservation, Osaka University, Yamadaoka 2-4, Suita, Osaka, 565-0871 Japan; ⁵Osaka City Institute of Public Health and Environmental Sciences, 8-34 Tojocho, Tennoji-ku, Osaka 543-0026, Japan; ⁶Hyogo Prefectural Institute of Environmental Sciences, 3-1-27 Yukihira-cho, Suma-ku, Kobe 654-0037, Japan; ⁷Center for Environmental Sciences, Kobe University, Fukaeminami 5-1-1, Higashinada-ku, Kobe 658-0022, Japan

Keywords: PFOS, PFOA, biotransformation, microbial consortia

Abstract: Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are manmade chemicals that can be found in the environment because of their wide use in chemical production since the 1950s. Their unique properties such as surface activity, water and oil repellency, thermal and acid resistance made them popular for usage in many industrial processes such as in protective coatings for textiles, carpets, leather, food containers, wiring insulations for telecommunications. PFASs are components of many important consumer products such fire-fighting foams, surfactants in cosmetics, electronics and medicals [1].

The focus of this study was to confirm biotransformation of PFASs by the action of microbial community isolated from locations known for long term pollution with PFOS and PFOA. Microorganisms that inhabiting polluted environment are already naturally adapted to higher concentrations of pollutant chemicals. For some of those microorganisms we can expect that they can degrade some particular pollutant. For example, the microbial community from PFOA-polluted site is expected to biotransform/biodegrade PFOA. For the isolation of microbial consortia, sediment samples from Saitama (PFOS polluted) and Osaka (PFOA polluted) were used.

Two microbial communities were enriched and isolated from each sample. Total bacteria were enriched using Bushnell Haas medium with glucose and Malt extract broth was used for enrichment of yeast and molds. In both media, PFOS and PFOA were respectively added to Saitama and Osaka samples to stimulate the growth of zymogenous microorganisms and to inhibit the growth of microorganisms sensitive to PFASs.

There are two main mechanisms for microbial biotransformation/biodegradation of any organic substance: use as only carbon and energy source, and cometabolism. When the substance is used as only carbon and energy source, the microorganisms can synthesize all the cellular materials and obtain all the energy necessary for growth using only that substance plus, nitrogen, phosphorus and oxygen as external electron acceptor under aerobic conditions. Most oil hydrocarbons are used in this way. However, when a substance is used in a cometabolism, as a growth substrate, a primary carbon source is needed, and organic substance or xenobiotic used for cometabolism is oxidized or reduced in an unintentional and coincidental process [2]. It is considered that cometabolic process is not beneficial to the microorganisms directly. Cometabolism may result in compounds that have changed polarity compared to the precursor compound. Furthermore, ecotoxicity and toxicity of precursor compounds can be changed after cometabolic activity of microorganisms.

Bacterial and Yeast microbial consortia were incubated with PFOS and PFOA in biotic tests. After centrifugation, the solution was loaded to Solid Phase Extraction cartridge (Presep PFC-II, Wako Pure Chemical Industries) preconditioned with 10mL of 0.1% methanolic ammonia, 10mL of methanol, 15 mL of Milli-Q water. For elution of the target compounds, 0.1% methanolic ammonia was used. The eluted solution was concentrated to 1mL under nitrogen stream and analyzed by LC-MS/MS. Abiotic tests were used as a control. Although there have been many reports on biodegradation of crude oil and POPs chemicals, only a small number of studies had focused on the biotransformation of PFASs with microorganisms isolated from polluted environment [3]. Our study suggests that microbial community isolated from environment polluted with PFOS and PFOA is a source of microorganisms who can conduct biotransformation of these emerging contaminants.

1. Zareitalabad, P., et al., Chemosphere 91 (2013) 725-732;

2. Dionisi, D., ChemBioEng Rev 1, (2014) 67-82;

3. Kwon, B.G., Chemosphere (2014) in press;

BIOTRANSFORMATION OF PERFLUORINATED COMPOUNDS BY THE ACTION OF MICROBIAL COMMUNITY ISOLATED FROM POLLUTED **ENVIRONMENT - ROAD TO SUCCESSFUL BIOREMEDIATION**

Vladimir P. BEŠKOSKI^{1,2,3}, Takeshi NAKANO⁴, Atsushi YAMAMOTO⁵, Chisato MATSUMURA⁶, Katsuya YAMAMOTO⁶, Mamoru MOTEGI⁷, Hideo OKAMURA⁸, Hideyuki INUI³

¹Faculty of Chemistry, University of Belgrade, Belgrade, Serbia; ²JSPS Invitation Fellowship Program for Research in Japan; ³Research Center for Environmental Genomics, Kobe University, Kobe, Japan; ⁴Research Center for Environmental Preservation, Osaka University, Osaka, Japan; ⁵Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan; ⁶Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan; ⁷Center for Environmental Science in Saitama, Saitama, Japan; 8Graduate School of Maritime Sciences, Kobe University, Kobe, Japan

Introduction

P-85

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are manmade chemicals that can be found in the environment because of their wide use in chemical production since the 1950s. Their unique properties such as surface activity, water and oil repellency, thermal and acid resistance made them popular for usage in many industrial processes such as in protective coatings for textiles, carpets, leather, food containers, wiring insulations for telecommunications. PFASs are components of many important consumer products such fire-fighting foams, surfactants in cosmetics, electronics and medicals [1].

Microorganisms that inhabiting polluted environment are already naturally adapted to higher concentrations of pollutant chemicals. The focus of this study was to confirm biotransformation of PFASs by the action of microbial community isolated from locations known for long term pollution with PFOS and PFOA.

Material and Methods

For the isolation of microbial consortia, sediment samples from Saitama (PFOS polluted) and Osaka Ajifu watercourse (PFOA polluted) were used.

polluted sediment

sediment

Total bacteria were enriched using Bushnell Haas broth (MgSO₄ 0.2g/L; CaCl₂ 0.02g/L; KH₂PO₄ 1.0g/L; K₂HPO₄ 1.0 g/L; NH₄NO₃ 1.0 g/L; FeCl₃ 0.05 g/L; pH 7.0 +/-0.2 at 25°C) with glucose (2g/L) and Malt extract broth was used for enrichment of yeast and molds. In both media, PFOS and PFOA were respectively added to Saitama and Osaka samples to stimulate the growth of zymogenous microorganisms and to inhibit the growth of microorganisms sensitive to PFASs.

Biotransformation/biodegradation experiment

Bacterial and yeast microbial consortia were incubated with PFOS and PFOA in biotic tests. After centrifugation, the solution was loaded to Solid Phase Extraction cartridge (Presep PFC-II, Wako Pure Chemical Industries) preconditioned with 10mL of 0.1% methanolic ammonia, 10mL of methanol, 15 mL of Milli-Q water. For elution of the target compounds, 0.1% methanolic ammonia was used. The eluted solution was concentrated to 1mL under nitrogen stream and analyzed by LC/MS. Abiotic tests were used as a control.

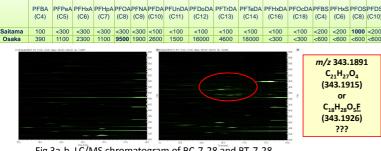
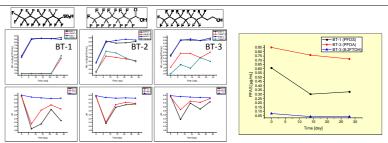
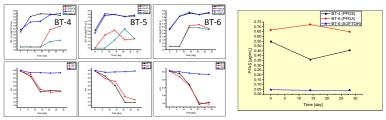

	Dominant	PFAS	PFAS Time - day of the experiment						
	microorganisms		0	7	14	21	28		
1.	Total chemo	PFOS	BT-1-0	BT-1-7	BT-1-14	BT-1-21	BT-1-28		
2.	organo	PFOA	BT-2-0	BT-2-7	BT-2-14	BT-2-21	BT-2-28		
3.	heterotrophs	8:2 FTOH	BT-3-0	BT-3-7	BT-3-14	BT-3-21	BT-3-2		
4.	Hydrocarbon	PFOS	BT-4-0	BT-4-7	BT-4-14	BT-4-21	BT-4-2		
5.	degrading	PFOA	BT-5-0	BT-5-7	BT-5-14	BT-5-21	BT-5-2		
6.	bacteria	8:2 FTOH	BT-6-0	BT-6-7	BT-6-14	BT-6-21	BT-6-2		
7.		PFOS	BT-7-0	BT-7-7	BT-7-14	BT-7-21	BT-7-2		
8.	Yeast and molds	PFOA	BT-8-0	BT-8-7	BT-8-14	BT-8-21	BT-8-2		
9.	='	8:2 FTOH	BT-9-0	BT-9-7	BT-9-14	BT-9-21	BT-9-28		

Table 1. Biotransformation experiment – model systems


BT-Biotic test (Media+PFCs+Microorganisms); AC - Abiotic control (Media+PFCs); BC-Biotic control (Media+Microorganisms)

Results and Discussion


Table 2. PFASs concentration in sediment samples sampled in Saitama and Osaka, Japan Concentration [ng/kg-dry]

Increase in the number of chemoorganoheterotrophic bacteria (BT-1, BT-2 and BT-3) was followed with decrease in pH during first week. The highest reduction in PFOS concentration was determined during first two weeks.

The concentration of hydrocarbon degrading bacteria (BT-4, BT-5 and BT-6) was stable and decrease in pH was more intensive. However decrease in PFAS concentration was not intensive.

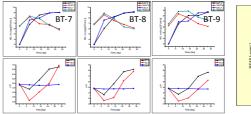


Fig 4a-r. Change of number of microorganisms and pH in BT. and BC model systems (B-bacteria: YM-yeast and molds).

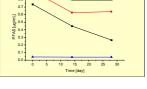


Fig 5a-c. Reductions in PFAS concentrations

The number of microorganisms was stable during biodegradation experiment and the changes within pH values suggested possible changes in the composition of microbial consortia.

Table 3. New peaks detected only in BT-x-28 model systems

	BT-1-28	BT-2-28	BT-3-28	BT-4-28	BT-5-28	BT-6-28	BT-7-28	BT-8-28	BT-9-28
419.2775	+	+			+				
341.1734	+	+					+	+	
343.1891		+	+				+	+	
347.2204	+	+	+				+	+	+
359.184		+	+				+	+	
363.2153			+	+			+	+	+
475.3032	+	+	+				+	+	+
455.2772			+				+	+	+
218.1029	+		+				+		+
412.9637 (PFOA)		+			+			+	
498.9268 (PFOS)	+			+			+		

Conclusion

Although there have been many reports on biodegradation of crude oil and POPs chemicals, only a small number of studies had focused on the biotransformation of PFASs with microorganisms isolated from polluted environment [3]. Our study suggests that microbial community isolated from environment polluted with PFOS and PFOA is a source of microorganisms who can reduce concentration of these emerging contaminants.

Acknowledgements: This research was supported by Japan Society for the Promotion of Science. Reference

1. Zareitalabad, P., et al., Chemosphere 91 (2013) 725-732; 2. Dionisi, D., ChemBioEng Rev 1, (2014) 67-82; 3. Kwon, B.G., Chemosphere 109 (2014) 221-225;