Publishers:
GRAFOKOMERC AD Trebinje
DIKTAS Project (Protection and Sustainable Use of the Dinaric Karst Transboundary Aquifer System)

For the publishers:
Zdravko Kašiković, GRAFOKOMERC AD Trebinje
Neno Kukurić, DIKTAS Project Manager

Editors:
Neno Kukurić, Zoran Stevanović, Neven Krešić

Technical preparation:
Vedran Furtula

English proofreading:
Natalija Miličević

Circulation:
300 copies

Front page:
Zalomka River (photo Ž. Zubac)

Printed by:
PRINT PLAST S.P. Trebinje

The authors of contributions in this proceedings are responsible for the content and copyrights of their respective contributions. Neither the DIKTAS nor any person acting on its behalf is responsible for the possible use of information contained in this publication.

CIP - Каталогизација у публикацији
Народна и университетска библиотека
Републике Српске, Бања Лука

556.3(082)

INTERNATIONAL Conference and Field Seminar "Karst Without Boundaries" (2014 ; Trebinje, Dubrovnik)

Tiraž 300. - Abstracts. - Registar.

1. DIKTAS (Trebinje)
COBISS.RS-ID 4308248
International Conference and Field Seminar

Karst Without Boundaries

In partnership of

In collaboration with

Other supporting partners and organizations

PROCEEDINGS

Edited by
N. Kukurić, Z. Stevanović, N. Krešić

11-15 June 2014
Trebinje (Bosnia & Herzegovina)
Dubrovnik (Croatia)
Table of Contents

INTRODUCTION 9

Krešić, N. and Kukurić, N.: INTRODUCTION .. 11

PAPERS AND ABSTRACTS ... 13

KEY NOTE CONTRIBUTIONS ... 15

Milanović, P.: OPTIMAL WATER MANAGEMENT - PREREQUISITE FOR REGIONAL SOCIO-ECONOMIC DEVELOPMENT IN KARST .. 15

Maurice, L.: THE IMPORTANCE OF KARST IN WEAKLY KARSTIC AQUIFERS ... 29

AQUIFER CHARACTERIZATION AND MONITORING .. 31

Mikszewski A. and Krešić N.: NUMERIC MODELING OF WELL CAPTURE ZONES IN KARST AQUIFERS 31

Fiorillo, F.: THE RECESSION OF SPRING HYDROGRAPHS, FOCUSED ON KARST AQUIFERS 39

Goeppert, N., Teich, U., and Goldscheider, N.: SOLUTE TRANSPORT VARIABILITY IN ALPINE KARST AQUIFERS UNDER DIFFERENT FLOW CONDITIONS ... 50

Fiorillo, F. and Pagnozzi, M.: RECHARGE PROCESSES OF KARST MASSIFS IN MEDITERRANEAN AREAS, CHARACTERISED BY WIDE ENDOREIC AREAS .. 51

Kavousi, A. and Raiesi, E.: DIRECT DETERMINATION OF GROUNDWATER MEAN RESIDENCE TIME IN KARSTIC AQUIFERS .. 56

Kovács, A., Perrochet, P., Szűcs, P., Lénárt, L. and Darabos, E.: CHARACTERISATION OF KARST AQUIFERS BASED ON HYDROGRAPH ANALYSIS .. 57

Stadler, H., Reszler, C., Farneleitner, A., Komma, J. and Böschl, G.: INTEGRATED TOOL FOR KARST WATER PROTECTION: EVENT BASED SAMPLING AND HYDROLOGICAL MODELLING BASED ON HYDROGEOLOGICAL MAPPING ... 65

Milanović, S.: SPATIAL MODELING OF KARST CHANNELS USING MULTIPARAMETRIC APPROACH - EXAMPLE OF BELJANICA KARST MASSIF ... 73

Mádl-Szőnyi, J.: DEEP CARBONATE SYSTEMS IN REGIONAL GROUNDWATER FLOW CONTEXT, THEORETICAL AND PRACTICAL CONSEQUENCES ... 79

Stevanović, Z.: ENVIRONMENTAL IMPACT INDICATORS IN SYSTEMATIC MONITORING OF KARST AQUIFER - DINARIC KARST CASE EXAMPLE ... 80

Minvielle, S., Lastennet, R., Denis, A. and Peyraube, N.: SPATIALIZATION OF DRAINAGE AREAS TO ESTIMATE TRANSFER FUNCTION IN AN EPIKARSTIC SPRING USING A RESERVOIR MODEL ... 96

Magni, S.: STUDY OF KARST AQUIFERS - ANOTHER POINT OF VIEW ... 104

Meaški, H., Bićandić, B. and Bičandić, R.: DELINEATION OF KARST CATCHMENT AREA USING SEVERAL METHODS - AN EXAMPLE OF PLITVICE LAKES CATCHMENT .. 118

Radulović, M., Sekulić, G., Vako, E. and Blagojević, M.: AN ASSESSMENT OF TERRITORY PARTICIPATION IN RECHARGE OF TRANSBOUNDARY KARST AQUIFER: A CASE STUDY FROM THE SKADAR LAKE CATCHMENT AREA .. 124

Bender, A., Stevanovic, Z., Mihaylova, B., Živanović, V., Kostov, K., Milanovic, S., Shanov, S., and Jemcović, I.: TRANSBOUNDARY KARST AND KARST AQUIFERS IN WEST STARA PLANINA MTS - CHARACTERISTICS AND PROBLEMS .. 125

Pavlić, U. and Tršić, N.: CHARACTERIZATION OF HYDROLOGIC CONDITIONS OF TRANSBOUNDARY GROUNDWATER BODY KARAVANKE IN SLOVENIA .. 131

Haryono, E., Putro, S.T., Julianto, B., and Nuchifera, F.: KARST MORPHOLOGY AND HYDROGEOLOGY OF KARANGBOULONG AREA, INDONESIA ... 137

Jiang, G. and Guo, F.: WATER BALANCE ANALYSIS BY A CAVE STREAM IN BARE EPIKARST IN SOUTH CHINA .. 144

Goldscheider, N., Lauber, U. and Ufrettch, W.: DETAILED INSIGHTS IN FLOW PROCESSES IN KARST CONDUIT NETWORKS FROM TRACER STUDIES IN THE ACTIVE CAVE SYSTEM DRAINING TO BLATOPF SPRING, SWABIAN ALB, GERMANY ... 145

Petitta, M., Barbieri, M., Caschetto, M.C., Frollini, E., Lacchini, A., Marinelli, V., Pacioni, E. and Sbarbati, C.: GROUNDWATER FLOW INTERACTION AT THE PIEDMONT OF KARST AQUIFERS ALONG ACTIVE TECTONIC SYSTEMS: SPRINGS AND SINKHOLES OF S. VITTORINO PLAIN (CENTRAL ITALY) ... 146

Kovac, G. and Ravbar, N.: HYDROLOGICAL CHARACTERIZATION OF KARST AQUIFERS AND SPRINGS USING TIME SERIES ANALYSIS, THE CASE OF CLASSICAL KARST (SLOVENIA) .. 147

Sappa, G. and Ferrari, F.: HYDROGEOLOGICAL MONITORING AND CHARACTERIZATION OF THE KARST AQUIFER FEEDING THE PERTUSO SPRING, SOUTH EAST OF LATIUM REGION (CENTRAL ITALY) 148

Sanchez, D., Andreo, B., Lopez, M., Mudarra, M. and Gonzalez, M.J.: CHARACTERIZATION OF GRAZALEMA KARST AQUIFERS (SOUTHERN SPAIN) BY MEANS OF GEOLOGICAL, HYDROCHEMICAL AND HYDRODYNAMIC DATA .. 155

Artugyan, L. and Urdea, P.: GROUNDWATER DRAINAGE MONITORING AND KARST TERRAIN ANALYSIS USING SPONTANEOUS POTENTIAL (SP) IN ANINA MINING AREA (BANAT MOUNTAINS, ROMANIA). PRELIMINARY STUDY .. 157

Kovacs, A. and Szocs, T.: PREDICTION OF KARST WATER RECOVERY FOLLOWING REGIONAL MINE DEPRESSURISATION IN THE TATA AREA, HUNGARY ... 165

Jeannin, P.-J., Philipp, H., Eric, W. and Meury, P.-X.: CO2 CONCENTRATION IN UNDERGROUND AIR VS. WATER HARDNESS IN THE MILANDE UNDERGROUND LABORATORY (JU, SWITZERLAND) .. 171

Gacin, M., Dobnikar - Tehovnik, M. and Mihorko, P.: GROUNDWATER QUALITY OF THE KRKA SPRING IN GROUNDWATER BODY DOLENSKI KRAS .. 172

Trček, B. and Šajn, R.: INVESTIGATION OF A LJUBLJANICA KARST RIVER BASIN BASED ON TRACE ELEMENTS .. 190

Pešak, Ž. and Rubinić, J.: MONITORING OF FLUCTUATION DYNAMICS OF GROUNDWATER LEVELS IN THE SAVUDRIJA AREA IN ISTRIA, CROATIA - DIFFERENT REACTIONS IN A LIMITED KARST COASTAL AREA .. 198
VERBOVŠEK, T., KOCELI, A. and KANDUČ, T.: THE CARBON CYCLE IN DOLOMITIC ROCKS AND GROUNDWATER IN SLOVENIA .. 200

VUKIĆ LUKIĆ, D., RUBINIĆ, J., RADIŠIĆ, M., CENOV, A., LUŠIĆ, D., KRSTELJ, J. AND MIČOVIĆ, V.: ISSUES RELATED TO SANITARY SEAWATER QUALITY MONITORING IN THE IMPACT ZONE OF COASTAL KARST SPRINGS - EXAMPLE FROM RIJEKA BAY .. 201

RIŠTIC VUKANJAC, V., STEVANOVIĆ, Z. and ČOKORILIOVIĆ, M.: UNDERGROUND PIRACY OF RAŠKA SPRING (SOUTHWESTERN SERBIA) AND CONCEPT FOR THE DELINEATION OF CATCHMENT AREA AND ESTIMATION OF KARST GROUNDWATER BUDGET ELEMENTS .. 207

LIU, W., PU, J., YU, S., ZHANG, C., AU, Y., YUAN, D., YANG, H. AND TANG, W.: PRELIMINARY STUDY ON THE THERMAL STRATIFICATION OF A SUBTROPICAL KARST RESERVOIR AND ITS INFLUENCE ON DIC ACTIVITY IN SUMMER .. 213

TÓTH, Á., MÁDL SZÓNYI, J., KOVÁCS, J. AND HORNÝÁK, G.: RELATIONSHIP BETWEEN SPRINGS, STRUCTURES AND HYDROSTRATIGRAPHY IN DIFFERENT SCALES ON THE EXAMPLE OF TRANS DANUBIAN RANGE, HUNGARY.. 214

ŽIVANOVIĆ, V., DRAGIŠIĆ, V., JEMC, I., RABRENNOVIĆ, M. AND ATANACKOVIĆ, N.: QUANTITATIVE ANALYSIS OF KARST SPRING REGIME - CASE EXAMPLE OF BLEDERIJA SUBTHERMAL KARST SPRING IN EASTERN SERBIA .. 222

ALMÁSI, I., WALKER, J., CRANSHAW, J., POTMA, K. AND ST OAKES, F.: HYPOGENIC KARST BENEATH THE ATHABASCA OIL SANDS - CONTROLS ON AQUIFERS AND AQUITARDS .. 228

PETROVIĆ, B.: PRELIMINARY CHARACTERIZATION OF THE KARST GROUNDWATER FLOW OF SUVA PLANINA MOUNTAIN (EASTERN SERBIA) .. 230

ATANACKOVIĆ, N., MAGAZINOVIĆ, S., DRAGIŠIĆ, V., ŽIVANOVIĆ, V., NINKOVIĆ, N. AND BAJIĆ, A.: KARST SPRING REGIME MONITORING AND ANALYSIS - A CASE STUDY OF TUPIZNICA KARST SPRING IN EASTERN SERBIA .. 237

GABROVŠEK, F.: MONITORING AND MODELLING OF GROUNDWATER DYNAMICS IN LJUBLJANICA AND REKA SYSTEMS .. 238

PETRVALSKÁ, A., KOLTAI, G., PALCSU, L. AND STRAKOVÁ, V.: FIRST RESULTS OF THE HYDROCHEMICAL MONITORING OF 6 SPRINGS ON JASOVSKÁ PLATEAU, SLOVAKIA .. 239

EL-KASHOUTY, M., EL-KAMMAR, A., MOKHITAR YEHIA, M. AND MIRO, M.: HYDROGEOLOGICAL CHARACTERISTICS OF DAMASCUS CITY AND ITS SURROUNDINGS, SYRIA .. 240

D. GEORGE, L. AND PONTA, G.: RISK-BASED ASSESSMENT FOR HALOGENATED HYDROCARBONS IN LIMESTONE TERRAIN AT A FORMER MANUFACTURING FACILITY .. 241

MENICHETTI, M.: HEAT AS A TRACER FOR HYDRODYNAMIC CHARACTERIZATION OF FRACTURED KARST: MONTE CUCCO IN ITALY’S NORTHERN APENNINES .. 242

ZHAO, K. AND WANG, Y.: A 1,200-YEAR-LONG ANNUALLY RESOLVED RECORD OF THE ASIAN SUMMER MONSOON FORM DONGGE CAVE, CHINA .. 243

M. SCHINDEL, G. AND M. SCHINDEL, G.: DATA COLLECTION AND RESEARCH PROGRAMS IN SUPPORT OF MANAGEMENT OF KARST AQUIFERS .. 246
AQUIFER MANAGEMENT AND LEGAL FRAMEWORK .. 251

PEKAŠ, Ž.: HARMONIZATION OF CRITERIA FOR DELINEATION OF SANITARY PROTECTION ZONES IN TRANSBOUNDARY AQUIFERS OF THE DINARIC KARST .. 251

PURI, S.: AQUIFER SYSTEM TDA AND LEGAL FRAMEWORKS - WHAT LESSON FOR DIKTAS? 256

HARYONO, E.: SUB-C: A HIDRO-MORPHOLOGICAL APPROACH FOR MINING SPATIAL PLANNING 278

STEWART, S. and MUSTAFA, S.: GROUNDWATER MANAGEMENT OF KARST AQUIFERS IN SOUTH AUSTRALIA: 2 CASE STUDIES .. 279

TRENČ, N., VELIČ, J. and DULIĆ, A.: EU HABITATS AND BIRDS DIRECTIVES AS A COMPLEMENTARY MECHANISM TO WATER LEGISLATION FOR CONSERVATION AND SUSTAINABLE USE OF WATER RESOURCES IN DINARIC KARST .. 288

PREBIJLI, T. and ČENCEVČUR CURK, B.: VULNERABILITY MAPPING OF THE KARST AQUIFER OF THE KANIN MOUNTAIN AREA ... 294

GÜNDÖĞAN, R., GEYIKLI, B., YAKUPOĞLU, T., DINDAROĞLU, T., H. ERDOĞAN, E., E. AKAY, A.: THE EFFECT OF CONVERSION OF NATIVE SHRUB LAND TO PISTACIO ORCHARD ON SOIL ORGANIC CARBON STOCK IN KARST AREAS IN SOUTHEAST TURKEY .. 295

WATER RESOURCES ENGINEERING .. 301

MILANOVIĆ, S. and Vasić, L.J.: 3D MODELING OF KARST CONDUIT; CASE EXAMPLE LEAKAGE BELOW VIŠEGRAD DAM .. 301

JEANIN, P.-J., PHILIPP, H. and ERIC, W.: A PRAGMATIC SIMULATION TOOL FOR WATER MANAGEMENT IN AN ALPINE KARST REGION: THE FLIMS CASE STUDY, GR SWITZERLAND .. 313

TUFEKČIĆ, D.: APPLICATION OF ELECTRO-MAGNETIC RESONANCE METHOD IN HYDRO-GEOPHYSICAL EXPLORATION OF KARST SYSTEM ... 315

ROUAJ, M. and QARGORI, K.: GEOPHYSICAL PROSPECTING OF KARSTIC GROUNDWATER IN TABULAR MIDDLE ATLAS (MOROCCO): A CASE STUDY .. 316

NEŠKOVIC, D., KRMPOTIC, M., TADIĆ, D. and MITROVIĆ, V.: THE POSSIBILITIES AND LIMITATIONS FOR GROUNDWATER UTILIZATION OF “OMARSKO VRELO” SPRING LOCATED IN TARA NATIONAL PARK (WESTERN SERBIA) .. 320

BAKŠIĆ, N., HARAMINA, T. and PILAŠ, I.: STATE AND PressURES ON THE AQUIFER IN THE AREA OF THE CITY OF ZAGREB .. 324

JIANHUA, C. and YUCHI, J.: HYDROGEOLOGICAL SETTING - BASED DAMS TO ACCESS THE GROUNDWATER TO SURFACE WATER - FOUR CASES FROM SOUTHWEST KARST AREA, CHINA .. 325

GROUNDWATER SUSTAINABLE USE, PROTECTION AND REMEDIATION 333

N., ALTRAN, E., PISELLI, SCIOLIS, D., SOSSE, P., LEBAN, M., CASAGRANDE, G., BRANCELJ, A., AND MÖR: WATER MANAGEMENT OF THE CLASSICAL KARST AQUIFER (NE ITALY, SW SLOVENIA) ... 333

BONACCI, O.: MAN’S INFLUENCE ON THE DINARIC KARST WATER AND ECOLOGICAL REGIMES ... 334

NAKKI, Z., FUNDUK, M., ČAPLĐAROVIĆ, O. AND PEKAŠ, Ž.: PROTECTION AND SUSTAINABLE UTILIZATION OF GROUNDWATER RESOURCES IN THE REPUBLIC OF CROATIA... 349

BIONDIĆ, R., MEAŠKI, H., AND BIONDIĆ, B.: VULNERABILITY MAPPING OF NOVJANSKA ŽRNOVNICA KARSTIC SPRING CATCHMENT AREA (CROATIA)... 357

GRIMMMEISEN, F., SAWARIEH, A., ZEMANN, M., KLINGER, J., GÖPPERT, N. AND GOLDSCHIEDE, N.: WATER QUALITY MONITORING FOR KARST GROUNDWATER PROTECTION IN URBAN KARST AQUIFERS IN A SEMI-ARID CLIMATE .. 364

JOLTOVIĆ, B.: POLLUTION PROBLEMS OF THE TRANSBOUNDARY KARST AQUIFER UNA AND POSSIBLE PROGRAMS OF MEASURES.. 365

GORAN, C., VLAICU, M., MUNTEANU, C.M., GIURGINCA, A., TERENTE, M.C., TUDORACHE, A. AND MARIN, C.: VEGETAL COVER CHANGE - A PLAUSIBLE CAUSE FOR ENHANCED DISSOLUTION PROCESSES WITHIN THE TOPOVITA CAVE (MEHEDINTI PLATEAU, ROMANIA) .. 377

DEVIC, N., AND FILIPOVIC, S.: ASSESSMENT OF HYDROCHEMICAL PROPERTIES OF GROUNDWATER IN KARST .. 378

ANTUNOVIC, I., ZOVKO, D. AND PRSKALO, G.: NEW FINDINGS ABOUT HYDROGEOLOGICAL BOUNDARIES OF RADOBLJAJA, STUDENAC AND LISTICA SPRING BASINS .. 384

DAOXIAN, Y.: URBAN HYDROGEOLOGY IN KARST REGIONS OF CHINA .. 385

KOSIC, N. AND RAVBAR, N.: KARST GROUNDWATER PROTECTION AND INTERNATIONAL COOPERATION .. 387

MAHMoudi SIvAND, S.: AN INVESTIGATION OF KARST SINKHOLES IN ABARKOUH PLAIN (YAZD PROVINCE, IRAN) .. 388

MARGANE, A. AND ISMAIL MAKKI, I.: PLANNING OF WASTEWATER FACILITIES IN KARSTIC TERRAIN - EXPERIENCES FROM LIBANOON .. 389

TAHERI, K., KEYVANNIA, M. AND TAHERI, M.: SITE SELECTION FOR PUBLIC WATER WELLS IN KARST AQUIFERS, EMERGENCY RESOURCES FOR URBAN AND RURAL WATER SUPPLY IN KERMANSHAH PROVINCE, IRAN .. 390

AWARENESS, EDUCATION AND OUTREACH .. 391

PARISE, M.: NO LIMITS, NO BOUNDARIES: A VIEW OF KARST AS THE TYPICAL TRANS-BOUNDARY ENVIRONMENT .. 392

BAŠAGIĆ, M. AND ŠUVALIĆ, A.: HISTORY OF KARST STUDIES OF EASTERN HERZEGOVINA .. 406

DODEROVIĆ, M., BULIĆ, I., BULIĆ, Z. AND BURIĆ, D.: KARST REGIONS OF MONTENEGRO AND ECOLOGICAL DEVELOPMENT PROBLEMS .. 413

LUČIĆ, I.: WHAT MADE IT POSSIBLE FOR "EUROPE’S LARGEST SINKING RIVER" TO DISAPPEAR? .. 414
BAHRAMMANESH, M. AND RAZAVI, B.S.: WHEAT PRODUCTION DECLINES DUE TO EXTENDED DROUGHT IN IRAN ... 422
ČALDAREVIĆ, O.: TRANSBOUNDARY DIMENSIONS OF EVERYDAY PRACTICES OF LIFE IN KARSTIC AREAS - SOCIAL AND SOCIOECONOMIC ASPECTS .. 426
ZHENQIU, Z.: DECADAL-SCALE CLIMATE VARIABILITY DURING MID-HOLOCENE RECORDED IN A SHENNONGJIA SPELEOTHEM .. 427

LIST OF AUTHORS ... 428
TRANSBOUNDARY KARST AND KARST AQUIFERS IN WEST STARA PLANINA MTs – CHARACTERISTICS AND PROBLEMS

Aleksey Benderev1, Zoran Stevanović2, Boyka Mihaylova1, Vladimir Živanović2, Konstantin Kostov1, Saša Milanović2, Stefan Shanov1 and Igor Jemcov2

1Geological Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria, aleksey@geology.bas.bg
2 University of Belgrade, FMG, Department of Hydrogeology, Belgrade, Serbia, zstev_2000@yahoo.co.uk

Abstract: The West Stara Planina Mountains are situated on the territories of two countries – Serbia and Bulgaria. The karstification is developed mainly in two carbonate complexes: Triassic and Upper-Jurassic while in western extension, in Vidić Mt., karstified Cretaceous carbonate rocks are prevailing. The complicate geologic and tectonic conditions are the reason for the disclosure of carbonate rocks in long strips, oriented east-west. They formed a typical mountain karst with wide distribution of classical karstic land forms. The region is thus characterized by dolines, poljes, blind valleys. In the study area there are some hundreds of caves in both countries, many of them well explored. Due to the relatively low air temperatures, high rainfalls and relatively flat parts of the area with a lot of negative karst landforms, the conditions for extensive infiltration of precipitations and abundant groundwater reserves are created. The drainage is taking place over numerous large karst springs. Most of these are overflow sources while some of them drain the deeper saturated zones. Their discharge regime thus varies in very wide ranges from relatively constant to highly changeable. Some of springs are tapped and used for potable water supply as in case of Pirot, Dimitrovgrad (Serbia) or Svoge (Bulgaria). The majority of the karst springs have relatively clear catchment areas and are not subject to transboundary discharge. Till now it has been unclear as to the water movement between the two countries in a small area near the boundary, where the direction of the sink river water is unknown. The common water balance of the border territories of Serbia and Bulgaria needs more hydrological, hydrogeological and climatic data, field survey and water tracings.

Key Words: Karst, karst aquifers, West Stara Planina (Balkan), Serbia, Bulgaria

INTRODUCTION

The Balkan Mountain (Stara planina) is a mountain range in the eastern part of the Balkan Peninsula and represent a part of the Alp-Himalayan chain. Its western part is located on the territory of Bulgaria and Serbia, which to a large extent, especially in the past makes difficult common survey. During the recent years, the joint research of Serbian and Bulgarian scientists, including the areas of geology, geomorphology and hydrogeology was significantly activated. One of the most interesting and topical problems is to unify the research for cross-border areas to solve the problems of karst aquifers and karst waters distribution, having an important ecological and practical significance, as well.

PRECONDITIONS FOR DEVELOPMENT OF KARST AND KARST WATERS

The object of study is part of the Western Balkan Mountains where karstified rocks are continuously distributed throughout the territories of the two countries. Such areas are located south of the main ridge of the mountain, between the Toplodol River (in Serbia) and Iskar River (in Bulgaria) (Fig. 1). The southern boundary of the studied area is marked by rivers
draining the surface and underground waters of this part of West Stara Planina – Nishava River in Serbia and Elovitsa and Blato Rivers in Bulgaria. The total surface of the transboundary region is about 2000 km².

Fig. 1. Sketch map of West Stara Planina Mountains. 1 - Karstified rocks (northern zone); 2 - Karstified rocks (southern zone); 3 – State boundary; 4 - Rivers; 5 - Main springs; 6 - Lakes; 7 - Poljes; 8 - Blind valleys.

The landscape is typically mountainous. The highest parts - between 1300 and 2015 m.a.s.l. (peak of Kom) are on the main ridge of Stara Planina. South of the main ridge and parallel to it follow a series of ridges and valleys. The lowest parts, from about 300 to 700 m.a.s.l., are located along the southern border. The relief determine various climatic conditions. The annual average air temperature amended from 3.4 to more than 10º C according to the altitude. The annual rainfall of about 600 blows to up 1100 mm (Koleva, Peneva, 1990).

The formation of karst and karst aquifers depends mainly on the geological conditions. They have been studied by several researchers and the results are summarized in geological maps scaled 1:100000: map sheet Pirot (Geol Survey Serbia, 1970) and map sheet Berkovitsa (Haidutov, Dimitrova, 1992). Between the two sheets have some discrepancies in the geological boundaries and rock outcrops of different age and lithology. To solve these problems in recent years launched a joint Serbian-Bulgarian research project (Tchoumatchenco et al., 2011a, b).

The karst and karst aquifers are formed in Triassic limestone and dolomite and Upper Jurassic and Lower Cretaceous limestone. Their outcrops and spatial distribution are associated with the complex tectonic structure in the area. In N-S direction, within the two countries are separated two zones (Figure 1). In the first zone, covering the northern, higher parts of the mountain, the two carbonate complexes build a monoclinal structures dipping to south and are separated by non-karstic Lower - Middle Jurassic rocks. To the south it is bordered by Lower Triassic sandstones and Paleozoic rocks in the higher parts of the
mountains. The southern boundary is a thrust belt of east-west direction passing through the study region.

The second southern zone is characterized by more complex block structure due to a series of horst and graben structures also oriented east-west. The complicate tectonics reflects on the landscape of this zone: series of linearly oriented in the same direction depressions separated by ridges.

The river network also has an important impact on the karst and karst waters. The formed typical mountain rivers in the higher parts of the area running to the south, some of them (mainly on the territory of Bulgaria) completely lost their riverflow entering the carbonate complexes. Some of the rivers cross the limestone and dolomite in the first zone and flow periodically after rainfall: for example Gintsi River, the upper reaches of the Visochka (Visočica) River, and the upper reaches of its right tributaries in Serbia (Rosomačka, Jelovička). The rivers Visočica and Nishava represent the major drainage arteries of the second (southern) zone and Iskar River drains only the eastern part of the northern zone. Several rivers as Iskrets and Blato in Bulgaria begin from large karst springs. The western boundary of the area - Temska River has almost no connection with karst.

KARST AND KARST LANDFORMS

About 60% of the total area of the Western Balkans is occupied by karstified rocks. From morphological point of view the karst is mostly naked, mountain type with widespread surface karst landforms. On the territory of Bulgaria and eastern parts of Serbia the surface karst forms are described by Radev (1915) and Petrovic (1974), respectively. Karst studies in some sections of the border are performed by other authors (Petrovic, 1974; Benderev, 1989; Zlatkova, 2006; Mihaylova et al. 2008;). The intensity of karst processes is different in the northern and southern zones of the studied area. In the northern zone there are widespread karrenfelds, dolines and uvalas. Important role play, especially on the territory of Bulgaria, the significant blind valleys. Compared to the southern zone, a large number of caves and pot holes are established here; for instance over 184 in Bulgaria. There is a wide distribution of caves which morphology is determined by the monoclonal dipping to south of the layers of carbonate rocks and representing old or active ponors of surface water. There are caves, representing active and temporary springs as well (Vodnata Cave, Krivata Cave, Dushnika Cave, etc.). Most of the deepest and longest caves in the West Balkans are located in this zone (Table 1).

<table>
<thead>
<tr>
<th>№</th>
<th>Cave</th>
<th>Country</th>
<th>Zone</th>
<th>Length (m)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balabanova Dupka</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>4800</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>Vetrena dupka</td>
<td>Serbia</td>
<td>Southern</td>
<td>4150</td>
<td>>50</td>
</tr>
<tr>
<td>3</td>
<td>Tizoin</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>3599</td>
<td>320</td>
</tr>
<tr>
<td>4</td>
<td>Vodnata Cave</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>3264</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Katsite Cave</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>2560</td>
<td>205</td>
</tr>
<tr>
<td>6</td>
<td>El Saguaro</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>2217</td>
<td>135</td>
</tr>
<tr>
<td>7</td>
<td>Golyamata Temnota</td>
<td>Bulgaria</td>
<td>Southern</td>
<td>2100</td>
<td>106</td>
</tr>
<tr>
<td>8</td>
<td>Krivata Cave</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>1500</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>Velika Pecina</td>
<td>Serbia</td>
<td>Northern</td>
<td>1440</td>
<td>>50</td>
</tr>
<tr>
<td>10</td>
<td>Dushnika Cave</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>827</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>Kozarskata Cave</td>
<td>Bulgaria</td>
<td>Northern</td>
<td>709</td>
<td>12</td>
</tr>
</tbody>
</table>
The karst distribution in the southern zone varies in the different areas, depending on the specific geomorphological and hydrogeological conditions. There is both naked karst and sections covered with a thick soil layers. The distribution of uvalas and dolines is different - there are both areas with significant dolines density (for example 164 dolines on the flattened ridge part of Tri Ushi Ridge in Bulgaria on area of 35 km²) and areas with relatively low levels of karstification. Typical for the zone are the large karst poljes: Rayanovsko, Dragomansko and Aldomirovsko poljes in Bulgaria, and Odorovacko in Serbia. According to the polje classification scheme of Gams (1994), the poljes in the Bulgarian part are of overflow type. In Dragomansko and Aldomirovsko poljes are form permanent marshes.

The number of the caves in this zone is much lower - about 60 in Bulgarian part. Most of the caves are small - up to 100 m long and 25 m deep. The exceptions are Vetrena dupka in Serbia (4150 m), and Golyamata Temnota Cave (2100 m) and Temnata Dupka Cave (493 m) in Bulgaria. The late two are active ponor caves.

KARST WATERS

The data on the karst aquifers and waters in the studied area are summarized separately for Bulgaria (Antonov, 1963; Antonov, Danchev, 1980) and Serbia (Stevanovic, 1994).

The karst aquifer recharge is primarily from rainfall. The rainfall quantity increases from south to north, due to larger values and the reduction of the evapotranspiration in the higher parts of the mountains. In the northern zone an important component of the water balance is temporary and permanent influation of surface rivers descending from the main ridge of Stara Planina. Inflation of surface water occurs in the southern part but to a lesser degree. These are mainly flows passing through karst poljes. The general direction of groundwater movement is from north to south, to the lowest parts of the landscape. The exception is only in the most eastern part of the region, where part of the karst water is directed to the Iskar River.

The northern zone is characterized by predominantly movement of groundwater in isolated channels and only in the most southern parts can be formed small saturated areas. Due to the block structure of the southern zone, much more favorable preconditions for saturated zones formation in the different blocks can be found. This zone is largest in the lowest parts of the region where the Neogene terrigenous (mostly clay) sediments filling Sofia graben and Pirot basin and create conditions for accumulation of groundwater.

The drainage is performed by springs, groundwater extraction and subterranean flows into lateral permeable intergranular aquifers. There are both, small gravity springs of small local catchment areas with low flow rates and typical ascending karst springs with high flows. In the northern zone springs with relatively constant high flows are often found. Of interest, are the larger drainage areas where there is a concentration of several springs draining different
hydrodynamic zones: for example Krupac in Serbia and Opitsvet - Bezden in Bulgaria. In these areas are both springs draining the upper part of the saturated zone with highly variable flow and springs on relatively lower elevations with less varying flow rates. Characteristic is the presence of ascending springs with higher temperatures - 19-22º C draining areas with deep circulation.

TRANSBOUNDARY PROBLEMS

The specific geomorphological, geological and hydrogeological conditions greatly reduces the areas where can be found transboundary impacts near the state border. In the northern zone, it is possible that water transfers from Komshtitsa River to Kamenicka River (Fig. 2) but this must be proven by detailed hydrometric measurements and tracing experiments.

In the southern zone the main drainage artery is Nishava River but probable influence of transboundary impact is minimal due to the small catchment areas, absence of a significant river recharge into the area and the lower level of karstification.

For a more complete elucidation of the possible cross-border relationships a number of obstacles exist because of limited access in the past due to pre-existing border regime and the varying degrees of available information. The main difficulties are related to:

1. Discordance of some geological boundaries and distribution of rock formations on the both sides of the state border;
2. Absence of mode observations of the rivers and springs near the border;
3. Difficult access to comparable hydrological and meteorological data.

CONCLUSION

The preliminary analysis of the existing information indicates that the karst region in the studied area is common and that the passing of karst water from one state to another is probable to a small extent. Therefore the continuation of the joint research between Serbian and Bulgarian hydrogeologists and karst scientists is necessary. The common water balance of the border territories of Serbia and Bulgaria needs more hydrological, hydrogeological and climatic data, field survey and water tracings.
REFERENCES

Radev, J. 1915, Karst forms in Western Stara Planina. Ann. of Sofia University, Historical and Philological Fac., v. 10-11, 149 p. (in Bulgarian).