PHYSICAL CHEMISTRY 2014

12th International Conference
on Fundamental and Applied Aspects of
Physical Chemistry

The Conference is dedicated to the
25. Anniversary of the Society of Physical Chemists of Serbia

September 22-26, 2014
Belgrade, Serbia
PHYSICAL CHEMISTRY 2014

12th International Conference
on Fundamental and Applied Aspects of
Physical Chemistry

Proceedings
Volume 1

The Conference is dedicated to the
25. Anniversary of the Society of Physical Chemists of Serbia

September 22-26, 2014
Belgrade, Serbia
SYNTHESIS OF GOLD NANOPARTICLES USING ALDEHYDE FUNCTIONALIZED LEVAN AS REDUCING AGENT

B. Kekež¹, G. Dj. Gojgić-Cvijović², D. M. Jakovljević², Lj. S. Živković³, V. P. Beškoski¹,² and M. M. Vrvić¹,²

¹Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Studentski trg 16, P.O. Box 51, Serbia; ²Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11158 Belgrade, P.O. Box 473, Njegoševa 12, Serbia (djakovlj@chem.bg.ac.rs); ³Vinča Institute of Nuclear Science, University of Belgrade, 11001 Belgrade, P.O. Box 522, Serbia.

ABSTRACT
In this work, gold nanoparticles (AuNPs) were synthesized in aqueous solution by aldehyde functionalized microbial polysaccharide levan as a reducing agent. Resulting nanoparticles were characterized by UV-Vis spectroscopy and by particle size analysis.

INTRODUCTION
The field of nanotechnology is in significant development as a result of wide application in different areas. The unique properties of nanoparticles are directly related to their wide use. In the last years, the application of polysaccharides in preparing nanoparticles greatly increased due to high content of hydroxyl groups in the glycan molecule that represents excellent matrix for providing the stability of formed nanoparticles in solution [1,2]. In this context, levan has an interesting potential, because it represents the relatively unexplored member in this area. This microbial polysaccharide (Fig.1) generally consists of β-(2,6)-fructose residues and a one D-glucose residue at the nonreducing end of the chain. Branching that occurs through β-(2,1)-linkages is often short and sometimes consisting of a single fructose residue. Levans have the great potential for application in food, pharmaceutical, medical, cosmetic and chemical industries, due to high solubility in water, non-toxicity and biocompatibility [3]. Gold nanoparticles (size range 1-100 nm) have physical and chemical properties different from the same material in bulk form, preferably because of large surface/volume ratio. They exhibit, in comparison with other metals, unique optical, electronic and bioactivity properties [4].
This paper reports the formation of gold nanoparticles (AuNPs) in aqueous solution of partially oxidized levan with aim of obtaining potentially applicable nanoparticles in various fields.

EXPERIMENTAL

Aldehyde-functionalized levan was obtained in reaction with periodate salts in aqueous solution at room temperature for 24 h. The aqueous solution of 10 mM HAuCl₄ was mixed with aqueous solution of 0.062 mM partially oxidized levan, that has been previously purified by dialysis and lyophilization. This resulted in the almost immediate appearance of pale purple color which has became dark purple by heating at 100 °C for one minute. The obtained products were characterized by UV-Vis spectroscopy (GBC Cintra 40 spectrophotometer) and by photon correlation spectroscopy (PCS), instrument Zetasizer NS with 633 nm He-Ne laser (Malvern).

RESULTS AND DISCUSSION

The aqueous gold ions Au³⁺ were reduced to metallic gold Au⁰ using aldehyde functionalized polysaccharide levan. Due to the high surface energy and extreme reactivity of AuNPs, the polysaccharide matrix of partially oxidized levan was stabilizing agent that prevented aggregation of obtained particles [5-7]. Levan contains different types of vicinal diol groups that can be subjected to periodate oxidation resulting in different types of dialdehyde structures.

The obtained particles were firstly characterized by UV-Vis data. UV-Vis spectrum of formed solution showed a strong absorption maximum at 520 nm (Fig. 2.) characteristic for AuNPs, due to its surface plasmon resonance. Their formation was confirmed visually too, based on the change in color of the solution, from pale yellow at the start of the reaction to dark purple.
Figure 2. UV-Vis spectrum of gold particles synthesized by aldehyde functionalized levan

The size distribution of synthesized gold particles, based on backscattered light intensity, evidenced their nanometric size, Fig. 3. The strong Gaussian peak in the range 10-100 nm indicated that the particles exhibited mainly monomodal distribution (mean diameter of 95.5% particles 34.28 nm). A small amount (4.5%) of larger sized population (3010 nm) also present, pointed to some particles aggregation.

Figure 3. Size distribution of gold particles measured by PCS

CONCLUSION
In this work, a new route for the synthesis of gold nanoparticles in the aqueous medium using the aldehyde functionalized polysaccharide levan as a reducing agent was shown. The synthesis of AuNPs was confirmed by UV-Vis spectroscopy and by particle size analysis. Formation of thus obtained nanoparticles suggests that polyaldehyde levan is reducing agent as
well as stabilizing agent considering the stability of nanoparticles in this solution.

ACKNOWLEDGEMENT
This work was supported by the Ministry of Education and Science of the Republic of Serbia through Projects III 43004 and 45012.

REFERENCES
SYNTHESIS OF GOLD NANOPARTICLES USING ALDEHYDE FUNCTIONALIZED LEVAN AS REDUCING AGENT

B. D. Kekez1, G. Dj. Gojčić-Cvijović2, D. M. Jakovljević2, L. J. S. Živković2, V. P. Beškoski1,2, M. M. Vrvić2,4
1Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Studentski trg 16, P.O. Box 51, Serbia;
2Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11158 Belgrade, P.O. Box 473, Njegoševa 12, Serbia;
3Vinča Institute of Nuclear Science, University of Belgrade, 11001 Belgrade, P.O. Box 222, Serbia;
4djakovlji@chem.bg.ac.rs

Introduction
The field of nanotechnology is in significant development as a result of wide application in different areas. The unique properties of nanoparticles are directly related to their wide use. In the last years, the application of polysaccharides in preparing nanoparticles greatly increased due to high content of hydroxyl groups in the glycan molecule that represents excellent matrix for providing the stability of formed nanoparticles in solution [1,2]. In this context, levan has an interesting potential, because it represents the relatively unexplored member in this area. This microbial polysaccharide [Fig. 1] generally consists of β-(1,6)-fructose residues and a one D-glucose residue at the nonreducing end of the chain. Branching that occurs through β-(1,1) linkages is often short and sometimes consisting of a single fructose residue.

Levans have the great potential for application in food, pharmaceutical, medical, cosmetic and chemical industries, due to high solubility in water, non-toxicity and biocompatibility [3]. Gold nanoparticles (size range 1-100 nm) have physical and chemical properties different from the same material in bulk form, preferably because of large surface/volume ratio. They exhibit, in comparison with other metals, unique optical, electronic and bioactivity properties [4].

Aim
This paper reports the formation of gold nanoparticles [AuNPs] in aqueous solution of partially oxidized levan with aim of obtaining potentially applicable nanoparticles in various fields.

Experimental
Aldehyde-functionalized levan was obtained in reaction with periodate salts in aqueous solution at room temperature for 24 h. The aqueous solution of 10 mM HAuCl₄ was mixed with aqueous solution of 0.062 mM partially oxidized levan, that has been previously purified by dialysis and lyophilization. This resulted in the almost immediate appearance of pale purple color which has become dark purple by heating at 100 °C for one minute. The obtained products were characterized by UV-Vis spectroscopy (680 Cintra 40 spectrophotometer) and by photon correlation spectroscopy (PCS), instrument Zetasizer NS with 633 nm He-Ne laser (Malvern).

Results and discussion
The aqueous gold ions Au⁺ were reduced to metallic gold Au⁰ using aldehyde functionalized polysaccharide levan. Due to the high surface energy and extreme reactivity of Au⁰, the polysaccharide matrix of partially oxidized levan was stabilizing agent that prevented aggregation of obtained particles [5,7]. Levan contains different types of vicinal diol groups that can be subjected to periodate oxidation resulting in different types of dialdehyde structures.

The obtained particles were firstly characterized by UV-Vis data. UV-Vis spectrum of formed solution showed a strong absorption maximum at 520 nm (Fig. 2.) characteristic for AuNPs, due to its surface plasmon resonance. Their formation was confirmed visually too, based on the change in color of the solution, from pale yellow at the start of the reaction to dark purple.

The size distribution of synthesized gold particles, based on backscattered light intensity, evidenced their nanometric size, Fig. 3. The strong Gaussian peak in the range 10-100 nm indicated that the particles exhibited mainly monomodal distribution (mean diameter of 95.5% particles 34.28 nm). A small amount (4.5%) of larger sized population (3010 nm) also present, pointed to some particles aggregation.

Conclusion
In this work, a new route for the synthesis of gold nanoparticles in the aqueous medium using the aldehyde functionalized polysaccharide levan as a reducing agent was shown. The synthesis of AuNPs was confirmed by UV-Vis spectroscopy and by particle size analysis. Formation of thus obtained nanoparticles suggests that polyaldehyde levan is reducing agent as well as stabilizing agent considering the stability of nanoparticles in this solution.

Acknowledgement
This work was supported by the Ministry of Education and Science of the Republic of Serbia through Projects III 43004 and 45012.

References