XXIII Congress
with international participation

BOOK OF ABSTRACTS

8-11 October 2014
Ohrid, R. Macedonia
Metropol Lake Resort
SCIENTIFIC COMMITTEE MEMBERS

President
Prof. Dr. Ljupčo Pejov, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Macedonia

Members:
Prof. Dr. Trajče Stafilov, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Macedonia

Prof. Dr. Jadranka Blaževska-Gilev, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje, Macedonia

Prof. Dr. Marina Stefova, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Macedonia

Prof. Dr. Gordana Bogoeva-Gaceva, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje, Macedonia

Prof. Dr. Blažo Boev, Faculty of Natural and Technical Sciences, Goce Delcev University-Stip, Macedonia

Prof. Dr. Ružica Manojlović, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje, Macedonia

Prof. Dr. Perica Paunović, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje, Macedonia

Prof. Dr. Borislav V. Toshev, Department of Physical Chemistry, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria

Prof. Dr. Dražen Vikić-Topić, Ruđer Bošković Institute, NMR Center, P. O. Box 180, Zagreb, Croatia

Prof. Dr. Tomaz Skapin, Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Ljubljana, Slovenia

Prof. Dr. Panče Naumov, New York University Abu Dhabi, Saadiyat Island, POB 129188, Abu Dhabi, UAE
CONTENTS

PLENARY LECTURES

PL 001 ELENA BOLDYREVA
Novosibirsk State University, Institute of Solid State Chemistry and
Mechanochemistry SB RAS
FROM PHARMACEUTICAL SUBSTANCES TO DRUG
FORMS. HOW CAN SOLID STATE CHEMISTRY HELP?

PL 002 PANČE NAUMOV
New York University Abu Dhabi, Saadiyat Island, POB 129188, Abu Dhabi,
UAE
SMART CRYSTALS AND POLYMERS

PL 003 DRAŽEN VIKIĆ-TOPIĆ
Ruder Bošković Institute, NMR Center, P. O. Box 180, Zagreb, Croatia
NMR SPECTROSCOPY OF BIOORGANIC MOLECULES

PL 004 DIANA NESHEVA
Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko
chussec 72, 1784 Sofia, Bulgaria
NANOSTRUCTURED INORGANIC SEMICONDUCTORS FOR
CHEMICAL SENSOR APPLICATIONS

PL 005 TRAJČE STAFILOV
Institute of Chemistry, Faculty of Science, Ss. Cyril and Methodius University,
Skopje, Republic of Macedonia
THE APPLICATION OF AAS, ICP-AES AND ICP-MS IN
ENVIRONMENTAL POLLUTION STUDIES

PL 006 MIROSLAV M. VRVIĆ
Faculty of Chemistry, University of Belgrade, Belgrade; Department of
Chemistry, ICHTM, University of Belgrade, Belgrade, "BREM GROUP" Ltd.,
Belgrade, Serbia
BIOREMEDIATION: GREEN CHEMISTRY AT WORK

PL 007 JADRANKA BLAŽEVSKA-GILEV
Faculty of Technology and Metallurgy, Ss Cyril and Methodius University,
Skopje, Republic of Macedonia
LASER ABLATIVE DEPOSITION OF POLYMERS AND
POLYMER COMPOSITES

PL 008 TOMAŽ SKAPIN
Department of Inorganic Chemistry and Technology,Jožef Stefan Institute,
Ljubljana, Slovenia
NANOSTRUCTURED INORGANIC FLUORIDES: TRICKY
PREPARATION OF MATERIALS WITH UNPRECEDENTED
CHARACTERISTICS

PL 009 VENELIN ENCHEV
Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia,
Bulgaria
THE PHENOMENON OF TAUTOMERISM
PL 006

BIOREMEDIATION: GREEN CHEMISTRY AT WORK

Miroslav M. Vrvić
email: mmvchem@sezampro.rs

Faculty of Chemistry, University of Belgrade, Belgrade; Department of Chemistry, IChTM, University of Belgrade, Belgrade, "BREM GROUP" Ltd., Belgrade, Serbia

Bioremediation (in the strict sense of the meaning) is the application of microorganisms (most often bacteria and fungi)—"biological agents" in the degradation and immobilization (toxic metals hydroxides or sulphides) of practically all pollutants of the environment, including POPs, and hexachlorocyclohexans-HCHs as one of high resistant, while products that are not hazardous for humans and the environment are obtained. This applies both to polluted ecospheres and stored and controlled pollutants. Each process of bioremediation during which microorganisms under aerobic conditions (anaerobic processes are more unfavourable) use a pollutant as nutrient or energy substrate, resulting in its mineralization as shown in the general equation:

\[C_{n}H_{m}O_{n}N_{p}P_{q}S_{r}Cl_{l} \rightarrow cCO_{2} + \frac{h}{2} H_{2}O + nNH_{4}^{+} + pHPO_{4}^{3-} + qSO_{4}^{2-} + rCl^{-} + \text{Biomass} + \text{Energy} \]

"Green technology" is a colloquial expression for the application of principles of green chemistry and its implementation through green engineering, with the inclusions of principles of this contemporary branch of (bio)chemical engineering, thus making a contribution to sustainable development and making the subject of "sustainable chemistry" one that is being increasingly spoken of in the past several years at most as a fundamental ideal of acceptable and desirable "zero waste" technologies that are being more closely approached by the best available technologies (BAT).

Green chemistry/green engineering is basically a set of principles (12+12) for the reduction of key elements that are the pillars of every technology (energy, raw materials and other accessory materials, equipment, risks and hazards, volatile organic compounds, waste, environmental impacts and the price).

Bioremediation is practically true "green technology", because the contaminant is disintegrated up to the level of carbon dioxide and inorganic mineral components, while biomass that increases fertility of the substrate is obtained, i.e. it becomes humified regardless of whether it is a natural or artificial soil substrate—made soil. Carbon dioxide that is released during the process of respiration of microorganisms is of biological origin and it is practically generated without being warmed up. The application of bioremediation procedures often occurs at the biodegradable waste generation site, by which one more of the green principles is being fulfilled, and it has a positive effect on the environment and bears no risks for workers, and therefore, with the utilization of biodegradable natural and most often waste auxiliary substrates and inorganic inert materials, with the minimum power consumption and acceptable prices versus effectiveness and efficacy.

Keywords: bioremediation, green chemistry, microorganisms