PLC/DAD/+HESI-MS/MS method was developed and evaluated. Hydrolysis was performed enzymatically using commercial β-glucosidase isolated from almond. Results of FRAP, ABTS and DPPH assays showed higher antioxidative activity of hydrolyzed C. erythraea methanol extract and pure compounds than non-hydrolyzed ones. Conversely, hydrolysis of C. erythraea methanol extracts led to lower antifungal activity and had weak or no influence on antibacterial activity. Based on this study it can be presumed that biosynthesis of secoiridoid glycosides, and their degradation mediated by β-glucosidases are regulated by various biotic factors, and are involved in defense system against herbivores and pathogens.

Keywords: secoiridoid glycosides, β-glucosidase, Centaurium erythraea

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (OII73024).

Antibacterial activity of Lady’s Mantle

Tatjana Borja¹, Vladimir Mihailović¹, Jelena Katanić¹, Milan Stanković², Nevena Stanković¹, Milan Mladenović¹

(tatjanaborja@gmail.com)

¹ Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac
² Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac

Lady’s Mantle (*Alchemilla vulgaris* L.) belongs to the Rosaceae family. In traditional medicine, it was used as herbal treatment for menstrual disorders. Due to the high content of phenolic compounds, *Alchemilla* species were also shown to possess anti-inflammatory, antioxidant, anti-influenza and anticarcinogenic activity. The purpose of this work was to evaluate the antibacterial properties of *A. vulgaris*. The methanolic extract of aerial parts of *A. vulgaris* prepared by maceration has been used to estimate the antibacterial activity against nine bacterial strains. The *in vitro* antibacterial activity was performed by microdilution method. Minimal inhibitory concentrations (MIC) were evaluated based on the color change of resazurin. The most sensitive bacterial strain was *Micrococcus lysodeikticus* (MIC 0.156 mg mL⁻¹). The methanolic extract of *A. vulgaris* also showed remarkable antibacterial potential against both ATCC and clinically isolated strains of *Enterococcus faecalis* (0.312 mg mL⁻¹ and 0.156 mg mL⁻¹, respectively). *Pseudomonas aeruginosa* was the most resistant species with MIC values 20 mg mL⁻¹. MIC values for chloramphenicol, used as standard, were in the range of 2.5-10 μg mL⁻¹. The results of the present investigation suggest that *A. vulgaris* possesses strong antibacterial activity against tested bacterial species, with MIC values ranging from 0.156 mg mL⁻¹ to 20 mg mL⁻¹. Based on these results, further chemical and pharmacological investigation, as well as isolation of bioactive compounds may be recommended.

Keywords: *Alchemilla vulgaris*, antibacterial activity, phenolic compounds

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (III 43004).